{-# OPTIONS --safe --warning=error --without-K #-} open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Setoids.Setoids open import Setoids.Orders open import Functions open import Fields.Fields open import Fields.Orders.Total.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Sets.EquivalenceRelations open import LogicalFormulae open import Groups.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Fields.Orders.Total.Lemmas {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {F : Field R} {p : _} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} {oR : PartiallyOrderedRing R pOrder} (oF : TotallyOrderedField F oR) where open Ring R open Group additiveGroup open Setoid S open Equivalence eq open Field F open TotallyOrderedField oF open TotallyOrderedRing oRing open PartiallyOrderedRing oR open SetoidTotalOrder total open SetoidPartialOrder pOrder open import Rings.InitialRing R open import Rings.Orders.Total.Lemmas oRing open import Rings.Orders.Partial.Lemmas oR open import Rings.Lemmas R open import Groups.Lemmas additiveGroup charNotN : (n : ℕ) → fromN (succ n) ∼ 0R → False charNotN n pr = irreflexive (