{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Groups.Homomorphisms.Definition open import Groups.Definition open import Numbers.Naturals.Naturals open import Setoids.Orders open import Setoids.Setoids open import Functions open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Homomorphisms.Definition open import Groups.Homomorphisms.Lemmas open import Rings.Ideals.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Homomorphisms.Kernel {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_+1_ _*1_ : A → A → A} {_+2_ _*2_ : B → B → B} {R1 : Ring S _+1_ _*1_} {R2 : Ring T _+2_ _*2_} {f : A → B} (fHom : RingHom R1 R2 f) where open import Groups.Homomorphisms.Kernel (RingHom.groupHom fHom) ringKernelIsIdeal : Ideal R1 groupKernelPred Ideal.isSubgroup ringKernelIsIdeal = groupKernelIsSubgroup Ideal.accumulatesTimes ringKernelIsIdeal {x} {y} fx=0 = transitive (RingHom.ringHom fHom) (transitive (Ring.*WellDefined R2 fx=0 reflexive) (transitive (Ring.*Commutative R2) (Ring.timesZero R2))) where open Setoid T open Equivalence eq