{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Groups.Definition open import Groups.Lemmas open import Rings.Definition open import Rings.Lemmas open import Rings.IntegralDomains open import Fields.Fields open import Functions open import Setoids.Setoids open import Setoids.Orders open import Fields.FieldOfFractions open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Fields.FieldOfFractionsOrder where fieldOfFractionsComparison : {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {c} A} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder pOrder} (I : IntegralDomain R) → (order : OrderedRing R tOrder) → Rel (fieldOfFractionsSet I) fieldOfFractionsComparison {_*_ = _*_} {R} {_<_} {tOrder = tOrder} i oring (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) with SetoidTotalOrder.totality tOrder (Ring.0R R) denomA fieldOfFractionsComparison {_*_ = _*_} {R} {_<_} {tOrder = tOrder} i oring (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0