{-# OPTIONS --warning=error --safe --guardedness --without-K #-} open import Setoids.Orders.Partial.Definition open import Setoids.Setoids open import LogicalFormulae open import Rings.Definition open import Numbers.Rationals.Definition open import Functions.Definition module Numbers.Reals.Definition where open import Fields.CauchyCompletion.Definition ℚOrdered ℚField open import Fields.CauchyCompletion.Setoid ℚOrdered ℚField open import Fields.CauchyCompletion.Addition ℚOrdered ℚField open import Fields.CauchyCompletion.Multiplication ℚOrdered ℚField open import Fields.CauchyCompletion.Ring ℚOrdered ℚField open import Fields.CauchyCompletion.Comparison ℚOrdered ℚField ℝ : Set ℝ = CauchyCompletion _+R_ : ℝ → ℝ → ℝ _+R_ = _+C_ _*R_ : ℝ → ℝ → ℝ _*R_ = _*C_ ℝSetoid = cauchyCompletionSetoid _=R_ : ℝ → ℝ → Set a =R b = Setoid._∼_ cauchyCompletionSetoid a b ℝRing : Ring cauchyCompletionSetoid _+R_ _*R_ ℝRing = CRing injectionR : ℚ → ℝ injectionR = injection injectionRInjective : Injection injectionR injectionRInjective = CInjection' 0R : ℝ 0R = injection 0Q _