{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Setoids.Setoids open import Rings.Definition open import Rings.Lemmas open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Groups.Definition open import Groups.Groups open import Fields.Fields open import Fields.Orders.Total.Definition open import Sets.EquivalenceRelations open import Sequences open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Functions.Definition open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Addition open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Semirings.Definition open import Groups.Homomorphisms.Definition open import Rings.Homomorphisms.Definition open import Groups.Lemmas open import Orders.Total.Definition module Fields.CauchyCompletion.PartiallyOrderedRing {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where private lemma3 : {c d : _} {C : Set c} {S : Setoid {c} {d} C} {_+_ : C → C → C} (G : Group S _+_) → ({x y : C} → Setoid._∼_ S (x + y) (y + x)) → (x y z : C) → Setoid._∼_ S (((Group.inverse G x) + y) + (x + z)) (y + z) lemma3 {S = S} {_+_ = _+_} G ab x y z = transitive +Associative (+WellDefined (transitive (ab {inverse x + y}) (transitive +Associative (transitive (+WellDefined invRight reflexive) identLeft))) reflexive) where open Setoid S open Equivalence (Setoid.eq S) open Group G open Setoid S open SetoidTotalOrder (TotallyOrderedRing.total order) open SetoidPartialOrder pOrder open Equivalence eq open PartiallyOrderedRing pRing open Ring R open Group additiveGroup open Field F open import Fields.Lemmas F open import Rings.Orders.Partial.Lemmas pRing open import Rings.Orders.Total.Lemmas order open import Fields.Orders.Lemmas {F = F} {pRing} (record { oRing = order }) open import Fields.Orders.Total.Lemmas {F = F} (record { oRing = order }) open import Fields.CauchyCompletion.Definition order F open import Fields.CauchyCompletion.Addition order F open import Fields.CauchyCompletion.Multiplication order F open import Fields.CauchyCompletion.Approximation order F open import Fields.CauchyCompletion.Group order F open import Fields.CauchyCompletion.Ring order F open import Fields.CauchyCompletion.Comparison order F open import Fields.CauchyCompletion.Setoid order F open import Groups.Homomorphisms.Lemmas CInjectionGroupHom open import Setoids.Orders.Total.Lemmas (TotallyOrderedRing.total order) private productPositives : (a b : A) → (injection 0R)