{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Setoids.Setoids open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Groups.Definition open import Fields.Fields open import Sets.EquivalenceRelations open import Sequences open import Functions.Definition open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition module Fields.CauchyCompletion.Definition {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where open Setoid S open SetoidTotalOrder (TotallyOrderedRing.total order) open SetoidPartialOrder pOrder open Equivalence eq open TotallyOrderedRing order open Ring R open Group additiveGroup open Field F open import Rings.Orders.Total.Lemmas order open import Rings.Orders.Total.AbsoluteValue order open import Rings.Orders.Total.Cauchy order open import Groups.Lemmas additiveGroup cauchyWellDefined : {s1 s2 : Sequence A} → ((m : ℕ) → index s1 m ∼ index s2 m) → cauchy s1 → cauchy s2 cauchyWellDefined {s1} {s2} prop c e 0