{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Groups.Definition open import Groups.Lemmas open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Rings.Orders.Total.Lemmas open import Rings.Lemmas open import Rings.IntegralDomains open import Fields.Fields open import Functions open import Setoids.Setoids open import Setoids.Orders open import Fields.FieldOfFractions open import Sets.EquivalenceRelations open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {c} A} {pOrder : SetoidPartialOrder S _<_} {pRing : PartiallyOrderedRing R pOrder} (I : IntegralDomain R) (order : TotallyOrderedRing pRing) where open SetoidTotalOrder (TotallyOrderedRing.total order) open import Rings.Orders.Partial.Lemmas open PartiallyOrderedRing pRing fieldOfFractionsComparison : Rel (fieldOfFractionsSet I) fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) with totality (Ring.0R R) denomA fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0