{-# OPTIONS --safe --warning=error #-} open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Sets.FinSet.Definition open import LogicalFormulae open import Numbers.Naturals.WithK open import Sets.FinSet.Lemmas module Sets.FinSetWithK where private sgEq : {l m : _} {L : Set l} → {pr : L → Set m} → {a b : Sg L pr} → (underlying a ≡ underlying b) → ({c : L} → (r s : pr c) → r ≡ s) → (a ≡ b) sgEq {l} {m} {L} {prop} {(a , b1)} {(.a , b)} refl pr2 with pr2 {a} b b1 sgEq {l} {m} {L} {prop} {(a , b1)} {(.a , .b1)} refl pr2 | refl = refl finNotEqualsRefl : {n : ℕ} {a b : FinSet (succ n)} → (p1 p2 : FinNotEquals a b) → p1 ≡ p2 finNotEqualsRefl {.1} {.fzero} {.(fsucc fzero)} (fne2 .fzero .(fsucc fzero) (inl (refl ,, refl))) (fne2 .fzero .(fsucc fzero) (inl (refl ,, refl))) = refl finNotEqualsRefl {.1} {.fzero} {.(fsucc fzero)} (fne2 .fzero .(fsucc fzero) (inl (refl ,, refl))) (fne2 .fzero .(fsucc fzero) (inr (() ,, snd))) finNotEqualsRefl {.1} {.(fsucc fzero)} {.fzero} (fne2 .(fsucc fzero) .fzero (inr (refl ,, refl))) (fne2 .(fsucc fzero) .fzero (inl (() ,, snd))) finNotEqualsRefl {.1} {.(fsucc fzero)} {.fzero} (fne2 .(fsucc fzero) .fzero (inr (refl ,, refl))) (fne2 .(fsucc fzero) .fzero (inr (refl ,, refl))) = refl finNotEqualsRefl {.(succ (succ _))} {.fzero} {.(fsucc a)} (fneN .fzero .(fsucc a) (inl (inl (refl ,, (a , refl))))) (fneN .fzero .(fsucc a) (inl (inl (refl ,, (.a , refl))))) = refl finNotEqualsRefl {.(succ (succ _))} {.fzero} {.(fsucc a)} (fneN .fzero .(fsucc a) (inl (inl (refl ,, (a , refl))))) (fneN .fzero .(fsucc a) (inl (inr ((a₁ , ()) ,, snd)))) finNotEqualsRefl {.(succ (succ _))} {.fzero} {.(fsucc a)} (fneN .fzero .(fsucc a) (inl (inl (refl ,, (a , refl))))) (fneN .fzero .(fsucc a) (inr ((fst ,, snd) , b))) = exFalso q where p : fzero ≡ fsucc fst p = _&_&_.one b q : False q with p ... | () finNotEqualsRefl {.(succ (succ _))} {.(fsucc a)} {.fzero} (fneN .(fsucc a) .fzero (inl (inr ((a , refl) ,, refl)))) (fneN .(fsucc a) .fzero (inl (inl (() ,, snd)))) finNotEqualsRefl {.(succ (succ _))} {.(fsucc a)} {.fzero} (fneN .(fsucc a) .fzero (inl (inr ((a , refl) ,, refl)))) (fneN .(fsucc a) .fzero (inl (inr ((.a , refl) ,, refl)))) = refl finNotEqualsRefl {.(succ (succ _))} {.(fsucc a)} {.fzero} (fneN .(fsucc a) .fzero (inl (inr ((a , refl) ,, refl)))) (fneN .(fsucc a) .fzero (inr ((fst ,, snd) , b))) = exFalso q where p : fzero ≡ fsucc snd p = _&_&_.two b q : False q with p ... | () finNotEqualsRefl {.(succ (succ _))} {a} {b} (fneN a b (inr (record { fst = fst ; snd = snd₁ } , snd))) (fneN .a .b (inl (inl (fst1 ,, snd₂)))) = exFalso q where p : fzero ≡ fsucc fst p = transitivity (equalityCommutative fst1) (_&_&_.one snd) q : False q with p ... | () finNotEqualsRefl {.(succ (succ _))} {a} {b} (fneN a b (inr (record { fst = fst ; snd = snd1 } , snd))) (fneN .a .b (inl (inr (fst₁ ,, snd2)))) = exFalso q where p : fzero ≡ fsucc snd1 p = transitivity (equalityCommutative snd2) (_&_&_.two snd) q : False q with p ... | () finNotEqualsRefl {.(succ (succ _))} {.fzero} {b} (fneN fzero b (inr (record { fst = fst ; snd = snd₁ } , snd))) (fneN .fzero .b (inr ((fst1 ,, snd₂) , b1))) = exFalso q where p : fzero ≡ fsucc fst1 p = _&_&_.one b1 q : False q with p ... | () finNotEqualsRefl {.(succ (succ _))} {.(fsucc a)} {.fzero} (fneN (fsucc a) fzero (inr (record { fst = fst ; snd = snd₁ } , snd))) (fneN .(fsucc a) .fzero (inr ((fst₁ ,, snd2) , b1))) = exFalso q where p : fzero ≡ fsucc snd2 p = _&_&_.two b1 q : False q with p ... | () finNotEqualsRefl {.(succ (succ _))} {.(fsucc a)} {.(fsucc b)} (fneN (fsucc a) (fsucc b) (inr (record { fst = fst ; snd = snd1 } , snd))) (fneN .(fsucc a) .(fsucc b) (inr ((fst1 ,, snd2) , b1))) = ans where t : a ≡ fst1 t = fsuccInjective (_&_&_.one b1) t' : a ≡ fst t' = fsuccInjective (_&_&_.one snd) u : b ≡ snd1 u = fsuccInjective (_&_&_.two snd) u' : b ≡ snd2 u' = fsuccInjective (_&_&_.two b1) equality : {c : FinSet (succ (succ _)) && FinSet (succ (succ _))} → (r1 s : (fsucc a ≡ fsucc (_&&_.fst c)) & (fsucc b ≡ fsucc (_&&_.snd c)) & FinNotEquals (_&&_.fst c) (_&&_.snd c)) → r1 ≡ s equality record { one = refl ; two = refl ; three = q } record { one = refl ; two = refl ; three = q' } = applyEquality (λ t → record { one = refl ; two = refl ; three = t }) (finNotEqualsRefl q q') r : (fst ,, snd1) ≡ (fst1 ,, snd2) r rewrite equalityCommutative t | equalityCommutative t' | equalityCommutative u | equalityCommutative u' = refl ans : fneN (fsucc a) (fsucc b) (inr ((fst ,, snd1) , snd)) ≡ fneN (fsucc a) (fsucc b) (inr ((fst1 ,, snd2) , b1)) ans = applyEquality (λ t → fneN (fsucc a) (fsucc b) (inr t)) (sgEq r equality)