{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Setoids.Setoids open import Rings.Definition open import Rings.Lemmas open import Rings.Order open import Groups.Definition open import Groups.Groups open import Fields.Fields open import Sets.EquivalenceRelations open import Sequences open import Setoids.Orders open import Functions open import LogicalFormulae open import Numbers.Naturals.Naturals module Fields.CauchyCompletion.Approximation {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder {_<_ = _<_} pOrder} {R : Ring S _+_ _*_} (order : OrderedRing R tOrder) (F : Field R) (charNot2 : Setoid._∼_ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) → False) where open Setoid S open SetoidTotalOrder tOrder open SetoidPartialOrder pOrder open Equivalence eq open OrderedRing order open Ring R open Group additiveGroup open Field F open import Rings.Orders.Lemmas(order) open import Fields.CauchyCompletion.Definition order F open import Fields.CauchyCompletion.Addition order F charNot2 open import Fields.CauchyCompletion.Setoid order F charNot2 approximate : (a : CauchyCompletion) → (ε : A) → Sg A (λ b → a +C (-C (injection b)) < ε) approximate a ε = ?