This commit is contained in:
Smaug123
2019-11-16 12:18:03 +00:00
parent 42f1defd2a
commit f8a2062c6e
6 changed files with 144 additions and 0 deletions

25
Modules/Definition.agda Normal file
View File

@@ -0,0 +1,25 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Groups.Abelian.Definition
open import Numbers.Naturals.Naturals
open import Setoids.Orders
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Modules.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+R_ : A A A} {_*_ : A A A} (R : Ring S _+R_ _*_) {m n : _} {M : Set m} {T : Setoid {m} {n} M} {_+_ : M M M} {G' : Group T _+_} (G : AbelianGroup G') (_·_ : A M M) where
record Module : Set (a b m n) where
field
dotWellDefined : {r s : A} {t u : M} Setoid.__ S r s Setoid.__ T t u Setoid.__ T (r · t) (s · u)
dotDistributesLeft : {r : A} {x y : M} Setoid.__ T (r · (x + y)) ((r · x) + (r · y))
dotDistributesRight : {r s : A} {x : M} Setoid.__ T ((r +R s) · x) ((r · x) + (s · x))
dotAssociative : {r s : A} {x : M} Setoid.__ T ((r * s) · x) (r · (s · x))
dotIdentity : {x : M} Setoid.__ T ((Ring.1R R) · x) x

34
Modules/Examples.agda Normal file
View File

@@ -0,0 +1,34 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Abelian.Definition
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Groups.Abelian.Definition
open import Numbers.Naturals.Naturals
open import Numbers.Integers.Integers
open import Setoids.Orders
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Modules.Definition
open import Groups.Cyclic.Definition
open import Groups.Cyclic.DefinitionLemmas
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Modules.Examples where
abGrpModule : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {G' : Group S _+_} (G : AbelianGroup G') Module Ring G (λ x i elementPower G' i x)
Module.dotWellDefined (abGrpModule {S = S} {G' = G'} G) {m} {n} {g} {h} m=n g=h = transitive (elementPowerWellDefinedG G' g h g=h {m}) (elementPowerWellDefinedZ' G' m n m=n {h})
where
open Setoid S
open Equivalence eq
Module.dotDistributesLeft (abGrpModule {G' = G'} G) {n} {x} {y} = elementPowerHomAbelian G' (AbelianGroup.commutative G) x y n
Module.dotDistributesRight (abGrpModule {S = S} {G' = G'} G) {r} {s} {x} = symmetric (elementPowerCollapse G' x r s)
where
open Equivalence (Setoid.eq S)
Module.dotAssociative (abGrpModule {G' = G'} G) {r} {s} {x} = elementPowerMultiplies G' r s x
Module.dotIdentity (abGrpModule {G' = G'} G) = Group.identRight G'

39
Modules/Lemmas.agda Normal file
View File

@@ -0,0 +1,39 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Groups.Lemmas
open import Groups.Abelian.Definition
open import Numbers.Naturals.Naturals
open import Setoids.Orders
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Modules.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Modules.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+R_ : A A A} {_*_ : A A A} {R : Ring S _+R_ _*_} {m n : _} {M : Set m} {T : Setoid {m} {n} M} {_+_ : M M M} {G' : Group T _+_} {G : AbelianGroup G'} {_·_ : A M M} (mod : Module R G _·_) where
open Group G'
open Ring R
open Setoid T
open Equivalence eq
open Module mod
moduleTimesZero : {x : M} (0R · x) 0G
moduleTimesZero {x} = equalsDoubleImpliesZero G' (symmetric x=2x)
where
x=2x : (0R · x) (0R · x) + (0R · x)
x=2x = transitive (dotWellDefined (Equivalence.symmetric (Setoid.eq S) (Group.identLeft additiveGroup)) reflexive) dotDistributesRight
moduleTimes-1 : {x : M} ((Group.inverse additiveGroup 1R) · x) inverse x
moduleTimes-1 {x} = transitive (transferToRight' G' j) (inverseWellDefined G' dotIdentity)
where
i : ((1R · x) + ((Group.inverse additiveGroup 1R) · x)) 0G
i = transitive (symmetric (transitive (dotWellDefined (Equivalence.symmetric (Setoid.eq S) (Group.invRight additiveGroup {1R})) reflexive) dotDistributesRight)) (moduleTimesZero)
j : (((Group.inverse additiveGroup 1R) · x) + (1R · x)) 0G
j = transitive (AbelianGroup.commutative G) i