Rejig subgroups, add ideals (#79)

This commit is contained in:
Patrick Stevens
2019-11-19 19:56:01 +00:00
committed by GitHub
parent f0790e4f52
commit f2f4e867fc
8 changed files with 69 additions and 145 deletions

View File

@@ -35,85 +35,6 @@ module Groups.Examples.ExampleSheet1 where
question1' : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} (G : Group S _+_) Setoid.__ S ((Group.0G G) + (Group.0G G)) (Group.0G G)
question1' G = Group.identRight G
{-
Question 2: intersection of subgroups is a subgroup; union of subgroups is a subgroup iff one is contained in the other.
First, define the intersection of subgroups and show that it is a subgroup.
-}
data SubgroupIntersectionElement {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {_+_ : A A A} {_+H1_ : B B B} {_+H2_ : C C C} (G : Group S _+_) {H1grp : Group T _+H1_} {H2grp : Group U _+H2_} {h1Inj : B A} {h2Inj : C A} {h1Hom : GroupHom H1grp G h1Inj} {h2Hom : GroupHom H2grp G h2Inj} (H1 : Subgroup G H1grp h1Hom) (H2 : Subgroup G H2grp h2Hom) : Set (a b c d e f) where
ofElt : {x : A} Sg B (λ b Setoid.__ S (h1Inj b) x) Sg C (λ c Setoid.__ S (h2Inj c) x) SubgroupIntersectionElement G H1 H2
subgroupIntersectionOp : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {_+_ : A A A} {_+H1_ : B B B} {_+H2_ : C C C} (G : Group S _+_) {H1grp : Group T _+H1_} {H2grp : Group U _+H2_} {h1Inj : B A} {h2Inj : C A} {h1Hom : GroupHom H1grp G h1Inj} {h2Hom : GroupHom H2grp G h2Inj} (H1 : Subgroup G H1grp h1Hom) (H2 : Subgroup G H2grp h2Hom) (r : SubgroupIntersectionElement G H1 H2) (s : SubgroupIntersectionElement G H1 H2) SubgroupIntersectionElement G H1 H2
subgroupIntersectionOp {S = S} {_+_ = _+_} {_+H1_ = _+H1_} {_+H2_ = _+H2_} G {h1Hom = h1Hom} {h2Hom = h2Hom} H1 H2 (ofElt (b , prB) (c , prC)) (ofElt (b2 , prB2) (c2 , prC2)) = ofElt ((b +H1 b2) , GroupHom.groupHom h1Hom) ((c +H2 c2) , transitive (GroupHom.groupHom h2Hom) (transitive (Group.+WellDefined G prC prC2) (Group.+WellDefined G (symmetric prB) (symmetric prB2))))
where
open Setoid S
open Equivalence eq
subgroupIntersectionSetoid : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {_+_ : A A A} {_+H1_ : B B B} {_+H2_ : C C C} (G : Group S _+_) {H1grp : Group T _+H1_} {H2grp : Group U _+H2_} {h1Inj : B A} {h2Inj : C A} {h1Hom : GroupHom H1grp G h1Inj} {h2Hom : GroupHom H2grp G h2Inj} (H1 : Subgroup G H1grp h1Hom) (H2 : Subgroup G H2grp h2Hom) Setoid (SubgroupIntersectionElement G H1 H2)
Setoid.__ (subgroupIntersectionSetoid {T = T} {U = U} G {h1Inj = h1} {h2Inj = h2} H1 H2) (ofElt (xH1 , prxH1) (xH2 , prxH2)) (ofElt (yH1 , pryH1) (yH2 , pryH2)) = (Setoid.__ T xH1 yH1) && (Setoid.__ U xH2 yH2)
Equivalence.reflexive (Setoid.eq (subgroupIntersectionSetoid {T = T} {U = U} G H1 H2)) {ofElt (a , prA) (b , prB)} = (Equivalence.reflexive (Setoid.eq T)) ,, (Equivalence.reflexive (Setoid.eq U))
Equivalence.symmetric (Setoid.eq (subgroupIntersectionSetoid {T = T} {U = U} G H1 H2)) {ofElt (a , prA) (b , prB)} {ofElt (c , prC) (d , prD)} (fst ,, snd) = Equivalence.symmetric (Setoid.eq T) fst ,, Equivalence.symmetric (Setoid.eq U) snd
Equivalence.transitive (Setoid.eq (subgroupIntersectionSetoid {T = T} {U = U} G H1 H2)) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst1 ,, snd1) (fst2 ,, snd2) = Equivalence.transitive (Setoid.eq T) fst1 fst2 ,, Equivalence.transitive (Setoid.eq U) snd1 snd2
subgroupIntersectionGroup : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {_+_ : A A A} {_+H1_ : B B B} {_+H2_ : C C C} (G : Group S _+_) {H1grp : Group T _+H1_} {H2grp : Group U _+H2_} {h1Inj : B A} {h2Inj : C A} {h1Hom : GroupHom H1grp G h1Inj} {h2Hom : GroupHom H2grp G h2Inj} (H1 : Subgroup G H1grp h1Hom) (H2 : Subgroup G H2grp h2Hom) Group (subgroupIntersectionSetoid G H1 H2) (subgroupIntersectionOp G H1 H2)
Group.+WellDefined (subgroupIntersectionGroup {S = S} {T = T} {U = U} G {H1grp = h1} {H2grp = h2} H1 H2) {ofElt (_ , _) (_ , _)} {ofElt (_ , _ ) (_ , _)} {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (pr1 ,, pr2) (pr3 ,, pr4) = transitiveT (Group.+WellDefined h1 pr1 reflexiveT) (Group.+WellDefined h1 reflexiveT pr3) ,, transitiveU (Group.+WellDefined h2 pr2 reflexiveU) ((Group.+WellDefined h2 reflexiveU pr4))
where
open Group G
open Setoid T
open Equivalence (Setoid.eq T) renaming (transitive to transitiveT ; symmetric to symmetricT ; reflexive to reflexiveT)
open Equivalence (Setoid.eq U) renaming (transitive to transitiveU ; symmetric to symmetricU ; reflexive to reflexiveU)
Group.0G (subgroupIntersectionGroup G {H1grp = H1grp} {H2grp = H2grp} {h1Hom = h1Hom} {h2Hom = h2Hom} H1 H2) = ofElt {x = Group.0G G} (Group.0G H1grp , imageOfIdentityIsIdentity h1Hom) (Group.0G H2grp , imageOfIdentityIsIdentity h2Hom)
Group.inverse (subgroupIntersectionGroup {S = S} G {H1grp = h1} {H2grp = h2} {h1Hom = h1hom} {h2Hom = h2hom} H1 H2) (ofElt (a , prA) (b , prB)) = ofElt (Group.inverse h1 a , homRespectsInverse h1hom) (Group.inverse h2 b , transitive (homRespectsInverse h2hom) (inverseWellDefined G (transitive prB (symmetric prA))))
where
open Setoid S
open Equivalence eq
Group.+Associative (subgroupIntersectionGroup G {H1grp = h1} {H2grp = h2} H1 H2) {ofElt (a , prA) (b , prB)} {ofElt (c , prC) (d , prD)} {ofElt (e , prE) (f , prF)} = Group.+Associative h1 ,, Group.+Associative h2
Group.identRight (subgroupIntersectionGroup G {H1grp = h1} {H2grp = h2} H1 H2) {ofElt (_ , _) (_ , _)} = Group.identRight h1 ,, Group.identRight h2
Group.identLeft (subgroupIntersectionGroup G {H1grp = h1} {H2grp = h2} H1 H2) {ofElt (_ , _) (_ , _)} = Group.identLeft h1 ,, Group.identLeft h2
Group.invLeft (subgroupIntersectionGroup G {H1grp = h1} {H2grp = h2} H1 H2) {ofElt (_ , _) (_ , _)} = Group.invLeft h1 ,, Group.invLeft h2
Group.invRight (subgroupIntersectionGroup G {H1grp = h1} {H2grp = h2} H1 H2) {ofElt (_ , _) (_ , _)} = Group.invRight h1 ,, Group.invRight h2
subgroupIntersectionInjectionIntoMain : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {_+_ : A A A} {_+H1_ : B B B} {_+H2_ : C C C} (G : Group S _+_) {H1grp : Group T _+H1_} {H2grp : Group U _+H2_} {h1Inj : B A} {h2Inj : C A} {h1Hom : GroupHom H1grp G h1Inj} {h2Hom : GroupHom H2grp G h2Inj} (H1 : Subgroup G H1grp h1Hom) (H2 : Subgroup G H2grp h2Hom) SubgroupIntersectionElement G H1 H2 A
subgroupIntersectionInjectionIntoMain G {h1Inj = f} H1 H2 (ofElt (a , prA) (b , prB)) = f a
subgroupIntersectionInjectionIntoMainIsHom : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {_+_ : A A A} {_+H1_ : B B B} {_+H2_ : C C C} (G : Group S _+_) {H1grp : Group T _+H1_} {H2grp : Group U _+H2_} {h1Inj : B A} {h2Inj : C A} {h1Hom : GroupHom H1grp G h1Inj} {h2Hom : GroupHom H2grp G h2Inj} (H1 : Subgroup G H1grp h1Hom) (H2 : Subgroup G H2grp h2Hom) GroupHom (subgroupIntersectionGroup G H1 H2) G (subgroupIntersectionInjectionIntoMain G H1 H2)
GroupHom.groupHom (subgroupIntersectionInjectionIntoMainIsHom G {h1Hom = h1} H1 H2) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} = GroupHom.groupHom h1
GroupHom.wellDefined (subgroupIntersectionInjectionIntoMainIsHom G {h1Hom = h1} H1 H2) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst ,, snd) = GroupHom.wellDefined h1 fst
subgroupIntersectionIsSubgroup : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {_+_ : A A A} {_+H1_ : B B B} {_+H2_ : C C C} (G : Group S _+_) {H1grp : Group T _+H1_} {H2grp : Group U _+H2_} {h1Inj : B A} {h2Inj : C A} {h1Hom : GroupHom H1grp G h1Inj} {h2Hom : GroupHom H2grp G h2Inj} (H1 : Subgroup G H1grp h1Hom) (H2 : Subgroup G H2grp h2Hom) Subgroup G (subgroupIntersectionGroup G H1 H2) (subgroupIntersectionInjectionIntoMainIsHom G H1 H2)
SetoidInjection.wellDefined (Subgroup.fInj (subgroupIntersectionIsSubgroup G {h1Hom = h1} H1 H2)) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst ,, snd) = GroupHom.wellDefined h1 fst
SetoidInjection.injective (Subgroup.fInj (subgroupIntersectionIsSubgroup {S = S} G H1 H2)) {ofElt (a , prA) (b , prB)} {ofElt (c , prC) (d , prD)} x~y = SetoidInjection.injective (Subgroup.fInj H1) x~y ,, SetoidInjection.injective (Subgroup.fInj H2) (transitive prB (transitive (transitive (symmetric prA) (transitive x~y prC) ) (symmetric prD)))
where
open Setoid S
open Equivalence eq
{-
To make sure we haven't defined something stupid, check that the intersection doesn't care which order the two subgroups came in, and check that the subgroup intersection is isomorphic to the original group in the case that the two were the same, and check that the intersection injects into the first subgroup.
-}
subgroupIntersectionIsomorphic : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {_+_ : A A A} {_+H1_ : B B B} {_+H2_ : C C C} (G : Group S _+_) {H1grp : Group T _+H1_} {H2grp : Group U _+H2_} {h1Inj : B A} {h2Inj : C A} {h1Hom : GroupHom H1grp G h1Inj} {h2Hom : GroupHom H2grp G h2Inj} (H1 : Subgroup G H1grp h1Hom) (H2 : Subgroup G H2grp h2Hom) GroupsIsomorphic (subgroupIntersectionGroup G H1 H2) (subgroupIntersectionGroup G H2 H1)
GroupsIsomorphic.isomorphism (subgroupIntersectionIsomorphic G H1 H2) (ofElt (a , prA) (b , prB)) = ofElt (b , prB) (a , prA)
GroupHom.groupHom (GroupIso.groupHom (GroupsIsomorphic.proof (subgroupIntersectionIsomorphic {T = T} {U = U} G H1 H2))) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} = Equivalence.reflexive (Setoid.eq U) ,, Equivalence.reflexive (Setoid.eq T)
GroupHom.wellDefined (GroupIso.groupHom (GroupsIsomorphic.proof (subgroupIntersectionIsomorphic G H1 H2))) {ofElt (a , prA) (b , prB)} {ofElt (_ , _) (_ , _)} (fst ,, snd) = snd ,, fst
SetoidInjection.wellDefined (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof (subgroupIntersectionIsomorphic G H1 H2)))) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst ,, snd) = snd ,, fst
SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof (subgroupIntersectionIsomorphic G H1 H2)))) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst ,, snd) = snd ,, fst
SetoidSurjection.wellDefined (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (subgroupIntersectionIsomorphic G H1 H2)))) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst ,, snd) = snd ,, fst
SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (subgroupIntersectionIsomorphic {T = T} {U = U} G H1 H2)))) {ofElt (a , prA) (b , prB)} = ofElt (b , prB) (a , prA) , (Equivalence.reflexive (Setoid.eq U) ,, Equivalence.reflexive (Setoid.eq T))
subgroupIntersectionOfSame : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {_+H1_ : B B B} (G : Group S _+_) {H1grp : Group T _+H1_} {h1Inj : B A} {h1Hom : GroupHom H1grp G h1Inj} (H1 : Subgroup G H1grp h1Hom) GroupsIsomorphic (subgroupIntersectionGroup G H1 H1) H1grp
GroupsIsomorphic.isomorphism (subgroupIntersectionOfSame G H1) (ofElt (a , prA) (b , prB)) = a
GroupHom.groupHom (GroupIso.groupHom (GroupsIsomorphic.proof (subgroupIntersectionOfSame {T = T} G H1))) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} = Equivalence.reflexive (Setoid.eq T)
GroupHom.wellDefined (GroupIso.groupHom (GroupsIsomorphic.proof (subgroupIntersectionOfSame G H1))) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst ,, _) = fst
SetoidInjection.wellDefined (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof (subgroupIntersectionOfSame G H1)))) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst ,, _) = fst
SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof (subgroupIntersectionOfSame {S = S} {T = T} G {h1Hom = h1Hom} H1)))) {ofElt (a , prA) (b , prB)} {ofElt (c , prC) (d , prD)} a~b = a~b ,, SetoidInjection.injective (Subgroup.fInj H1) (transitive prB (transitive (transitive (symmetric prA) (transitive (GroupHom.wellDefined h1Hom a~b) prC)) (symmetric prD)))
where
open Setoid S
open Equivalence eq
SetoidSurjection.wellDefined (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (subgroupIntersectionOfSame G H1)))) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst ,, _) = fst
SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (subgroupIntersectionOfSame {S = S} {T = T} G H1)))) {b} = ofElt (b , Equivalence.reflexive (Setoid.eq S)) (b , Equivalence.reflexive (Setoid.eq S)) , (Equivalence.reflexive (Setoid.eq T))
{- TODO: finish question 2 -}
{-
Question 3. We can't talk about yet, so we'll just work in an arbitrary integral domain.
Show that the collection of linear functions over a ring forms a group; is it abelian?