Slight reorg (#21)

This commit is contained in:
Patrick Stevens
2019-01-22 12:54:02 -05:00
committed by GitHub
parent 9cccd51cbf
commit ecde6acce4
3 changed files with 204 additions and 168 deletions

View File

@@ -14,170 +14,6 @@ open import PrimeNumbers
open import Groups2
module GroupsExamples where
integersMinusNotGroup : Group (reflSetoid ) (_-Z_) False
integersMinusNotGroup record { wellDefined = wellDefined ; identity = identity ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } with multAssoc {nonneg 3} {nonneg 2} {nonneg 1}
integersMinusNotGroup record { wellDefined = wellDefined ; identity = identity ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } | ()
integersTimesNotGroup : Group (reflSetoid ) (_*Z_) False
integersTimesNotGroup record { wellDefined = wellDefined ; identity = (nonneg zero) ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } with multIdentLeft {negSucc 1}
... | ()
integersTimesNotGroup record { wellDefined = wellDefined ; identity = (nonneg (succ zero)) ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } with invLeft {nonneg zero}
... | bl with inverse (nonneg zero)
integersTimesNotGroup record { wellDefined = wellDefined ; identity = (nonneg (succ zero)) ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } | () | nonneg zero
integersTimesNotGroup record { wellDefined = wellDefined ; identity = (nonneg (succ zero)) ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } | () | nonneg (succ x)
integersTimesNotGroup record { wellDefined = wellDefined ; identity = (nonneg (succ zero)) ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } | () | negSucc x
integersTimesNotGroup record { wellDefined = wellDefined ; identity = (nonneg (succ (succ x))) ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } with succInjective (negSuccInjective (multIdentLeft {negSucc 1}))
... | ()
integersTimesNotGroup record { wellDefined = wellDefined ; identity = (negSucc x) ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } with multIdentLeft {nonneg 2}
integersTimesNotGroup record { wellDefined = wellDefined ; identity = (negSucc x) ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } | ()
-- Groups example 8.9 from lecture 1
data Weird : Set where
e : Weird
a : Weird
b : Weird
c : Weird
_+W_ : Weird Weird Weird
e +W t = t
a +W e = a
a +W a = e
a +W b = c
a +W c = b
b +W e = b
b +W a = c
b +W b = e
b +W c = a
c +W e = c
c +W a = b
c +W b = a
c +W c = e
+WAssoc : {x y z : Weird} (x +W (y +W z)) (x +W y) +W z
+WAssoc {e} {y} {z} = refl
+WAssoc {a} {e} {z} = refl
+WAssoc {a} {a} {e} = refl
+WAssoc {a} {a} {a} = refl
+WAssoc {a} {a} {b} = refl
+WAssoc {a} {a} {c} = refl
+WAssoc {a} {b} {e} = refl
+WAssoc {a} {b} {a} = refl
+WAssoc {a} {b} {b} = refl
+WAssoc {a} {b} {c} = refl
+WAssoc {a} {c} {e} = refl
+WAssoc {a} {c} {a} = refl
+WAssoc {a} {c} {b} = refl
+WAssoc {a} {c} {c} = refl
+WAssoc {b} {e} {z} = refl
+WAssoc {b} {a} {e} = refl
+WAssoc {b} {a} {a} = refl
+WAssoc {b} {a} {b} = refl
+WAssoc {b} {a} {c} = refl
+WAssoc {b} {b} {e} = refl
+WAssoc {b} {b} {a} = refl
+WAssoc {b} {b} {b} = refl
+WAssoc {b} {b} {c} = refl
+WAssoc {b} {c} {e} = refl
+WAssoc {b} {c} {a} = refl
+WAssoc {b} {c} {b} = refl
+WAssoc {b} {c} {c} = refl
+WAssoc {c} {e} {z} = refl
+WAssoc {c} {a} {e} = refl
+WAssoc {c} {a} {a} = refl
+WAssoc {c} {a} {b} = refl
+WAssoc {c} {a} {c} = refl
+WAssoc {c} {b} {e} = refl
+WAssoc {c} {b} {a} = refl
+WAssoc {c} {b} {b} = refl
+WAssoc {c} {b} {c} = refl
+WAssoc {c} {c} {e} = refl
+WAssoc {c} {c} {a} = refl
+WAssoc {c} {c} {b} = refl
+WAssoc {c} {c} {c} = refl
weirdGroup : Group (reflSetoid Weird) _+W_
Group.wellDefined weirdGroup = reflGroupWellDefined
Group.identity weirdGroup = e
Group.inverse weirdGroup t = t
Group.multAssoc weirdGroup {r} {s} {t} = +WAssoc {r} {s} {t}
Group.multIdentRight weirdGroup {e} = refl
Group.multIdentRight weirdGroup {a} = refl
Group.multIdentRight weirdGroup {b} = refl
Group.multIdentRight weirdGroup {c} = refl
Group.multIdentLeft weirdGroup {e} = refl
Group.multIdentLeft weirdGroup {a} = refl
Group.multIdentLeft weirdGroup {b} = refl
Group.multIdentLeft weirdGroup {c} = refl
Group.invLeft weirdGroup {e} = refl
Group.invLeft weirdGroup {a} = refl
Group.invLeft weirdGroup {b} = refl
Group.invLeft weirdGroup {c} = refl
Group.invRight weirdGroup {e} = refl
Group.invRight weirdGroup {a} = refl
Group.invRight weirdGroup {b} = refl
Group.invRight weirdGroup {c} = refl
weirdAb : AbelianGroup weirdGroup
AbelianGroup.commutative weirdAb {e} {e} = refl
AbelianGroup.commutative weirdAb {e} {a} = refl
AbelianGroup.commutative weirdAb {e} {b} = refl
AbelianGroup.commutative weirdAb {e} {c} = refl
AbelianGroup.commutative weirdAb {a} {e} = refl
AbelianGroup.commutative weirdAb {a} {a} = refl
AbelianGroup.commutative weirdAb {a} {b} = refl
AbelianGroup.commutative weirdAb {a} {c} = refl
AbelianGroup.commutative weirdAb {b} {e} = refl
AbelianGroup.commutative weirdAb {b} {a} = refl
AbelianGroup.commutative weirdAb {b} {b} = refl
AbelianGroup.commutative weirdAb {b} {c} = refl
AbelianGroup.commutative weirdAb {c} {e} = refl
AbelianGroup.commutative weirdAb {c} {a} = refl
AbelianGroup.commutative weirdAb {c} {b} = refl
AbelianGroup.commutative weirdAb {c} {c} = refl
weirdProjection : Weird FinSet 4
weirdProjection a = ofNat 0 (le 3 refl)
weirdProjection b = ofNat 1 (le 2 refl)
weirdProjection c = ofNat 2 (le 1 refl)
weirdProjection e = ofNat 3 (le zero refl)
weirdProjectionSurj : Surjection weirdProjection
Surjection.property weirdProjectionSurj fzero = a , refl
Surjection.property weirdProjectionSurj (fsucc fzero) = b , refl
Surjection.property weirdProjectionSurj (fsucc (fsucc fzero)) = c , refl
Surjection.property weirdProjectionSurj (fsucc (fsucc (fsucc fzero))) = e , refl
Surjection.property weirdProjectionSurj (fsucc (fsucc (fsucc (fsucc ()))))
weirdProjectionInj : (x y : Weird) weirdProjection x weirdProjection y Setoid.__ (reflSetoid Weird) x y
weirdProjectionInj e e fx=fy = refl
weirdProjectionInj e a ()
weirdProjectionInj e b ()
weirdProjectionInj e c ()
weirdProjectionInj a e ()
weirdProjectionInj a a fx=fy = refl
weirdProjectionInj a b ()
weirdProjectionInj a c ()
weirdProjectionInj b e ()
weirdProjectionInj b a ()
weirdProjectionInj b b fx=fy = refl
weirdProjectionInj b c ()
weirdProjectionInj c e ()
weirdProjectionInj c a ()
weirdProjectionInj c b ()
weirdProjectionInj c c fx=fy = refl
weirdFinite : FiniteGroup weirdGroup (FinSet 4)
SetoidToSet.project (FiniteGroup.toSet weirdFinite) = weirdProjection
SetoidToSet.wellDefined (FiniteGroup.toSet weirdFinite) x y = applyEquality weirdProjection
SetoidToSet.surj (FiniteGroup.toSet weirdFinite) = weirdProjectionSurj
SetoidToSet.inj (FiniteGroup.toSet weirdFinite) = weirdProjectionInj
FiniteSet.size (FiniteGroup.finite weirdFinite) = 4
FiniteSet.mapping (FiniteGroup.finite weirdFinite) = id
FiniteSet.bij (FiniteGroup.finite weirdFinite) = idIsBijective
weirdOrder : groupOrder weirdFinite 4
weirdOrder = refl
elementPowZ : (n : ) (elementPower Group (nonneg 1) n) nonneg n
elementPowZ zero = refl
elementPowZ (succ n) rewrite elementPowZ n = refl

View File

@@ -0,0 +1,199 @@
{-# OPTIONS --safe --warning=error #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals
open import Numbers.Integers
open import Numbers.Rationals
open import Sets.FinSet
open import Groups.GroupDefinition
open import Groups.Groups
open import Rings.RingDefinition
open import IntegersModN
module Groups.LectureNotes.Lecture1 where
IsGroup : _
IsGroup = Group
IsGroup : _
IsGroup = Ring.additiveGroup Ring
-- TODO: R is a group with +
integersMinusNotGroup : Group (reflSetoid ) (_-Z_) False
integersMinusNotGroup record { wellDefined = wellDefined ; identity = identity ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } with multAssoc {nonneg 3} {nonneg 2} {nonneg 1}
integersMinusNotGroup record { wellDefined = wellDefined ; identity = identity ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } | ()
integersTimesNotGroup : Group (reflSetoid ) (_*Z_) False
integersTimesNotGroup record { wellDefined = wellDefined ; identity = (nonneg zero) ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } with multIdentLeft {negSucc 1}
... | ()
integersTimesNotGroup record { wellDefined = wellDefined ; identity = (nonneg (succ zero)) ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } with invLeft {nonneg zero}
... | bl with inverse (nonneg zero)
integersTimesNotGroup record { wellDefined = wellDefined ; identity = (nonneg (succ zero)) ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } | () | nonneg zero
integersTimesNotGroup record { wellDefined = wellDefined ; identity = (nonneg (succ zero)) ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } | () | nonneg (succ x)
integersTimesNotGroup record { wellDefined = wellDefined ; identity = (nonneg (succ zero)) ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } | () | negSucc x
integersTimesNotGroup record { wellDefined = wellDefined ; identity = (nonneg (succ (succ x))) ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } with succInjective (negSuccInjective (multIdentLeft {negSucc 1}))
... | ()
integersTimesNotGroup record { wellDefined = wellDefined ; identity = (negSucc x) ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } with multIdentLeft {nonneg 2}
integersTimesNotGroup record { wellDefined = wellDefined ; identity = (negSucc x) ; inverse = inverse ; multAssoc = multAssoc ; multIdentRight = multIdentRight ; multIdentLeft = multIdentLeft ; invLeft = invLeft ; invRight = invRight } | ()
-- TODO: Q is not a group with *Q
-- TODO: Q without 0 is a group with *Q
-- TODO: {1, -1} is a group with *
nIsGroup : (n : ) (0<n : 0 <N n) _
nIsGroup n pr = nGroup n pr
-- Groups example 8.9 from lecture 1
data Weird : Set where
e : Weird
a : Weird
b : Weird
c : Weird
_+W_ : Weird Weird Weird
e +W t = t
a +W e = a
a +W a = e
a +W b = c
a +W c = b
b +W e = b
b +W a = c
b +W b = e
b +W c = a
c +W e = c
c +W a = b
c +W b = a
c +W c = e
+WAssoc : {x y z : Weird} (x +W (y +W z)) (x +W y) +W z
+WAssoc {e} {y} {z} = refl
+WAssoc {a} {e} {z} = refl
+WAssoc {a} {a} {e} = refl
+WAssoc {a} {a} {a} = refl
+WAssoc {a} {a} {b} = refl
+WAssoc {a} {a} {c} = refl
+WAssoc {a} {b} {e} = refl
+WAssoc {a} {b} {a} = refl
+WAssoc {a} {b} {b} = refl
+WAssoc {a} {b} {c} = refl
+WAssoc {a} {c} {e} = refl
+WAssoc {a} {c} {a} = refl
+WAssoc {a} {c} {b} = refl
+WAssoc {a} {c} {c} = refl
+WAssoc {b} {e} {z} = refl
+WAssoc {b} {a} {e} = refl
+WAssoc {b} {a} {a} = refl
+WAssoc {b} {a} {b} = refl
+WAssoc {b} {a} {c} = refl
+WAssoc {b} {b} {e} = refl
+WAssoc {b} {b} {a} = refl
+WAssoc {b} {b} {b} = refl
+WAssoc {b} {b} {c} = refl
+WAssoc {b} {c} {e} = refl
+WAssoc {b} {c} {a} = refl
+WAssoc {b} {c} {b} = refl
+WAssoc {b} {c} {c} = refl
+WAssoc {c} {e} {z} = refl
+WAssoc {c} {a} {e} = refl
+WAssoc {c} {a} {a} = refl
+WAssoc {c} {a} {b} = refl
+WAssoc {c} {a} {c} = refl
+WAssoc {c} {b} {e} = refl
+WAssoc {c} {b} {a} = refl
+WAssoc {c} {b} {b} = refl
+WAssoc {c} {b} {c} = refl
+WAssoc {c} {c} {e} = refl
+WAssoc {c} {c} {a} = refl
+WAssoc {c} {c} {b} = refl
+WAssoc {c} {c} {c} = refl
weirdGroup : Group (reflSetoid Weird) _+W_
Group.wellDefined weirdGroup = reflGroupWellDefined
Group.identity weirdGroup = e
Group.inverse weirdGroup t = t
Group.multAssoc weirdGroup {r} {s} {t} = +WAssoc {r} {s} {t}
Group.multIdentRight weirdGroup {e} = refl
Group.multIdentRight weirdGroup {a} = refl
Group.multIdentRight weirdGroup {b} = refl
Group.multIdentRight weirdGroup {c} = refl
Group.multIdentLeft weirdGroup {e} = refl
Group.multIdentLeft weirdGroup {a} = refl
Group.multIdentLeft weirdGroup {b} = refl
Group.multIdentLeft weirdGroup {c} = refl
Group.invLeft weirdGroup {e} = refl
Group.invLeft weirdGroup {a} = refl
Group.invLeft weirdGroup {b} = refl
Group.invLeft weirdGroup {c} = refl
Group.invRight weirdGroup {e} = refl
Group.invRight weirdGroup {a} = refl
Group.invRight weirdGroup {b} = refl
Group.invRight weirdGroup {c} = refl
weirdAb : AbelianGroup weirdGroup
AbelianGroup.commutative weirdAb {e} {e} = refl
AbelianGroup.commutative weirdAb {e} {a} = refl
AbelianGroup.commutative weirdAb {e} {b} = refl
AbelianGroup.commutative weirdAb {e} {c} = refl
AbelianGroup.commutative weirdAb {a} {e} = refl
AbelianGroup.commutative weirdAb {a} {a} = refl
AbelianGroup.commutative weirdAb {a} {b} = refl
AbelianGroup.commutative weirdAb {a} {c} = refl
AbelianGroup.commutative weirdAb {b} {e} = refl
AbelianGroup.commutative weirdAb {b} {a} = refl
AbelianGroup.commutative weirdAb {b} {b} = refl
AbelianGroup.commutative weirdAb {b} {c} = refl
AbelianGroup.commutative weirdAb {c} {e} = refl
AbelianGroup.commutative weirdAb {c} {a} = refl
AbelianGroup.commutative weirdAb {c} {b} = refl
AbelianGroup.commutative weirdAb {c} {c} = refl
weirdProjection : Weird FinSet 4
weirdProjection a = ofNat 0 (le 3 refl)
weirdProjection b = ofNat 1 (le 2 refl)
weirdProjection c = ofNat 2 (le 1 refl)
weirdProjection e = ofNat 3 (le zero refl)
weirdProjectionSurj : Surjection weirdProjection
Surjection.property weirdProjectionSurj fzero = a , refl
Surjection.property weirdProjectionSurj (fsucc fzero) = b , refl
Surjection.property weirdProjectionSurj (fsucc (fsucc fzero)) = c , refl
Surjection.property weirdProjectionSurj (fsucc (fsucc (fsucc fzero))) = e , refl
Surjection.property weirdProjectionSurj (fsucc (fsucc (fsucc (fsucc ()))))
weirdProjectionInj : (x y : Weird) weirdProjection x weirdProjection y Setoid.__ (reflSetoid Weird) x y
weirdProjectionInj e e fx=fy = refl
weirdProjectionInj e a ()
weirdProjectionInj e b ()
weirdProjectionInj e c ()
weirdProjectionInj a e ()
weirdProjectionInj a a fx=fy = refl
weirdProjectionInj a b ()
weirdProjectionInj a c ()
weirdProjectionInj b e ()
weirdProjectionInj b a ()
weirdProjectionInj b b fx=fy = refl
weirdProjectionInj b c ()
weirdProjectionInj c e ()
weirdProjectionInj c a ()
weirdProjectionInj c b ()
weirdProjectionInj c c fx=fy = refl
weirdFinite : FiniteGroup weirdGroup (FinSet 4)
SetoidToSet.project (FiniteGroup.toSet weirdFinite) = weirdProjection
SetoidToSet.wellDefined (FiniteGroup.toSet weirdFinite) x y = applyEquality weirdProjection
SetoidToSet.surj (FiniteGroup.toSet weirdFinite) = weirdProjectionSurj
SetoidToSet.inj (FiniteGroup.toSet weirdFinite) = weirdProjectionInj
FiniteSet.size (FiniteGroup.finite weirdFinite) = 4
FiniteSet.mapping (FiniteGroup.finite weirdFinite) = id
FiniteSet.bij (FiniteGroup.finite weirdFinite) = idIsBijective
weirdOrder : groupOrder weirdFinite 4
weirdOrder = refl
-- TODO: dihedral groups
-- TODO: matrix groups on R
-- TODO: general linear groups on R