Lots of without-K (#110)

This commit is contained in:
Patrick Stevens
2020-04-11 12:14:03 +01:00
committed by GitHub
parent 412edaf4c7
commit e9aa1bcc05
30 changed files with 424 additions and 98 deletions

View File

@@ -120,16 +120,7 @@ abstract
IntegralDomain.intDom orderedFieldIsIntDom = decidedIntDom R orderedFieldIntDom
IntegralDomain.nontrivial orderedFieldIsIntDom pr = Field.nontrivial F (Equivalence.symmetric (Setoid.eq S) pr)
fromNIncreasing : (n : ) (fromN n) < (fromN (succ n))
fromNIncreasing zero = <WellDefined reflexive (symmetric identRight) (0<1 nontrivial)
fromNIncreasing (succ n) = <WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (fromNIncreasing n) 1R)
fromNPreservesOrder : {a b : } (a <N b) (fromN a) < (fromN b)
fromNPreservesOrder {zero} {succ zero} a<b = fromNIncreasing 0
fromNPreservesOrder {zero} {succ (succ b)} a<b = <Transitive (fromNPreservesOrder (succIsPositive b)) (fromNIncreasing (succ b))
fromNPreservesOrder {succ a} {succ b} a<b = <WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (fromNPreservesOrder (canRemoveSuccFrom<N a<b)) 1R)
charZero : (n : ) (0R (fromN (succ n))) False
charZero n 0=sn = irreflexive (<WellDefined 0=sn reflexive (fromNPreservesOrder (succIsPositive n)))
charZero n 0=sn = irreflexive (<WellDefined 0=sn reflexive (fromNPreservesOrder nontrivial (succIsPositive n)))
charZero' : (n : ) ((fromN (succ n)) 0R) False
charZero' n pr = charZero n (symmetric pr)

View File

@@ -54,6 +54,19 @@ abstract
halfHalves : {a : A} (1/2 * (a + a)) a
halfHalves {a} = transitive (*WellDefined reflexive (+WellDefined (symmetric identIsIdent) (symmetric identIsIdent))) (transitive (*WellDefined reflexive (symmetric *DistributesOver+')) (transitive *Associative (transitive (*WellDefined 1/2is1/2 reflexive) identIsIdent)))
abstract
bothNearImpliesNear : {t r s : A} (e : A) .(0<e : 0R < e) (abs (r + inverse t) < e) (abs (s + inverse t) < e) abs (r + inverse s) < (e + e)
bothNearImpliesNear {t} {r} {s} e 0<e rNearT sNearT = u
where
pr : ((abs (r + inverse t)) + (abs (s + inverse t))) < (e + e)
pr = ringAddInequalities rNearT sNearT
t' : (abs (r + inverse t) + abs (t + inverse s)) < (e + e)
t' = <WellDefined (+WellDefined reflexive (transitive (absNegation _) (absWellDefined _ _ (transitive invContravariant (+WellDefined (invTwice _) reflexive))))) reflexive pr
u : abs (r + inverse s) < (e + e)
u with triangleInequality (r + inverse t) (t + inverse s)
... | inl t'' = <Transitive (<WellDefined (absWellDefined _ _ (transitive +Associative (+WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) reflexive))) reflexive t'') t'
... | inr eq = <WellDefined (transitive (symmetric eq) (absWellDefined _ _ (transitive +Associative (+WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) reflexive)))) reflexive t'
private
limitsUniqueLemma : (x : Sequence A) {r s : A} (xr : x ~> r) (xs : x ~> s) (r<s : r < s) False
limitsUniqueLemma x {r} {s} xr xs r<s = irreflexive (<WellDefined reflexive (symmetric prE) u')

View File

@@ -0,0 +1,64 @@
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Setoids.Subset
open import Setoids.Setoids
open import Setoids.Orders
open import Sets.EquivalenceRelations
open import Rings.Orders.Total.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Definition
open import Fields.Fields
open import Groups.Definition
open import Sequences
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Semirings.Definition
open import Functions
open import Fields.Orders.Total.Definition
open import Numbers.Primes.PrimeNumbers
module Fields.Orders.Limits.Lemmas {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {_<_ : Rel {_} {c} A} {R : Ring S _+_ _*_} {pOrder : SetoidPartialOrder S _<_} {F : Field R} {pRing : PartiallyOrderedRing R pOrder} (oF : TotallyOrderedField F pRing) where
open Ring R
open TotallyOrderedField oF
open TotallyOrderedRing oRing
open PartiallyOrderedRing pRing
open import Rings.Orders.Total.Lemmas oRing
open import Rings.Orders.Partial.Lemmas pRing
open SetoidTotalOrder total
open SetoidPartialOrder pOrder
open Group additiveGroup
open import Groups.Lemmas additiveGroup
open Setoid S
open Equivalence eq
open Field F
open import Fields.CauchyCompletion.Definition (TotallyOrderedField.oRing oF) F
open import Fields.Orders.Limits.Definition oF
open import Fields.Lemmas F
open import Fields.Orders.Total.Lemmas oF
open import Rings.Characteristic R
open import Rings.InitialRing R
private
2!=3 : 2 3 False
2!=3 ()
convergentSequenceCauchy : (nontrivial : 0R 1R False) {a : Sequence A} {r : A} a ~> r (decidedCharacteristic : ((1R + 1R) 0R) || (((1R + 1R) 0R) False)) cauchy a
convergentSequenceCauchy nontrivial {a} {r} a->r (inl 2=0) ε x with 1/nPositive 2 λ t 2!=3 (characteristicWellDefined nontrivial {2} {3} twoIsPrime threeIsPrime (transitive (transitive +Associative identRight) 2=0) t)
... | 0<1/3 with allInvertible (fromN 3) λ t 2!=3 (characteristicWellDefined nontrivial {2} {3} twoIsPrime threeIsPrime (transitive (transitive +Associative identRight) 2=0) t)
... | 1/3 , pr1/3 with a->r (1/3 * ε) (orderRespectsMultiplication 0<1/3 x)
... | N , pr = N , λ {m} {n} ans m n
where
2/3 : (1/3 + 1/3) < 1R
2/3 = <WellDefined reflexive (transitive (transitive (+WellDefined (transitive (symmetric identIsIdent) *Commutative) (transitive (+WellDefined (transitive (symmetric identIsIdent) *Commutative) (transitive (+WellDefined (symmetric (transitive *Commutative identIsIdent)) (symmetric timesZero)) (symmetric *DistributesOver+))) (symmetric *DistributesOver+))) (symmetric *DistributesOver+)) pr1/3) (<WellDefined reflexive (transitive (+WellDefined reflexive (symmetric identRight)) (symmetric +Associative)) (orderRespectsAddition (<WellDefined identLeft reflexive (orderRespectsAddition 0<1/3 1/3)) 1/3))
ans : (m n : ) N <N m N <N n abs (index a m + inverse (index a n)) < ε
ans m n N<m N<n = <Transitive (bothNearImpliesNear {r} (1/3 * ε) (orderRespectsMultiplication 0<1/3 x) (pr m N<m) (pr n N<n)) (<WellDefined *DistributesOver+' identIsIdent (ringCanMultiplyByPositive x 2/3))
convergentSequenceCauchy _ {a} {r} a->r (inr 2!=0) e 0<e with halve 2!=0 e
... | e/2 , prE/2 with a->r e/2 (halvePositive' prE/2 0<e)
... | N , pr = N , λ {m} {n} ans m n
where
ans : (m n : ) N <N m N <N n abs (index a m + inverse (index a n)) < e
ans m n N<m N<n = <WellDefined reflexive prE/2 (bothNearImpliesNear {r} e/2 (halvePositive' prE/2 0<e) (pr m N<m) (pr n N<n))

View File

@@ -0,0 +1,28 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Setoids.Setoids
open import Setoids.Orders
open import Functions
open import Fields.Fields
open import Fields.Orders.Partial.Definition
open import Numbers.Naturals.Semiring
open import Sets.EquivalenceRelations
open import LogicalFormulae
open import Groups.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.Orders.Partial.Lemmas {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} {F : Field R} {p : _} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} (oF : PartiallyOrderedField F pOrder) where
open Ring R
open Group additiveGroup
open Setoid S
open Equivalence eq
open Field F
open PartiallyOrderedField oF
open SetoidPartialOrder pOrder
open import Rings.Orders.Partial.Lemmas oRing
open import Rings.InitialRing R

View File

@@ -0,0 +1,44 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Setoids.Setoids
open import Setoids.Orders
open import Functions
open import Fields.Fields
open import Fields.Orders.Total.Definition
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Sets.EquivalenceRelations
open import LogicalFormulae
open import Groups.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.Orders.Total.Lemmas {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} {F : Field R} {p : _} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} {oR : PartiallyOrderedRing R pOrder} (oF : TotallyOrderedField F oR) where
open Ring R
open Group additiveGroup
open Setoid S
open Equivalence eq
open Field F
open TotallyOrderedField oF
open TotallyOrderedRing oRing
open PartiallyOrderedRing oR
open SetoidTotalOrder total
open SetoidPartialOrder pOrder
open import Rings.InitialRing R
open import Rings.Orders.Total.Lemmas oRing
open import Rings.Orders.Partial.Lemmas oR
open import Rings.Lemmas R
open import Groups.Lemmas additiveGroup
1/nPositive : (n : ) (charNotN : (fromN (succ n) 0R) False) 0R < underlying (allInvertible _ charNotN)
1/nPositive 0 nNot0 with allInvertible (fromN 1) nNot0
... | 1/1 , pr1 = <WellDefined reflexive (transitive (symmetric pr1) (transitive (transitive (*WellDefined reflexive identRight) *Commutative) identIsIdent)) (0<1 λ i nNot0 (transitive identRight (symmetric i)))
1/nPositive (succ n) nNot0 with allInvertible (fromN (succ (succ n))) nNot0
... | 1/n , pr1/n with totality 0R 1/n
... | inr x = exFalso (nNot0 (oneZeroImpliesAllZero (transitive (symmetric (transitive (*WellDefined (symmetric x) reflexive) timesZero')) pr1/n)))
... | inl (inl x) = x
... | inl (inr x) = exFalso (1<0False (<WellDefined pr1/n timesZero' (ringCanMultiplyByPositive (fromNPreservesOrder (anyComparisonImpliesNontrivial x) (succIsPositive (succ n))) x)))