Add Everything (#34)

This commit is contained in:
Patrick Stevens
2019-08-18 10:35:15 +01:00
committed by GitHub
parent a31ae0d1ea
commit e7c54fa48a
45 changed files with 415 additions and 378 deletions

View File

@@ -1,13 +1,13 @@
{-# OPTIONS --safe --warning=error #-}
{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Functions
open import Naturals
open import FinSet
open import Numbers.Naturals
open import Sets.FinSet
module Cardinality where
module Sets.Cardinality where
record CountablyInfiniteSet {a : _} (A : Set a) : Set a where
field
counting : A
@@ -227,5 +227,5 @@ module Cardinality where
-}
injectionToNMeansCountable : {a : _} {A : Set a} {f : A } Injection f InfiniteSet A Countable A
injectionToNMeansCountable {f = f} inj record { isInfinite = isInfinite } = {!!}
-- injectionToNMeansCountable : {a : _} {A : Set a} {f : A → } → Injection f → InfiniteSet A → Countable A
-- injectionToNMeansCountable {f = f} inj record { isInfinite = isInfinite } = {!!}

View File

@@ -1,4 +1,4 @@
{-# OPTIONS --safe --warning=error #-}
{-# OPTIONS --safe --warning=error --without-K #-}
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
@@ -32,73 +32,6 @@ module Sets.FinSet where
sgEq {l} {m} {L} {prop} {(a , b1)} {(.a , b)} refl pr2 with pr2 {a} b b1
sgEq {l} {m} {L} {prop} {(a , b1)} {(.a , .b1)} refl pr2 | refl = refl
finNotEqualsRefl : {n : } {a b : FinSet (succ n)} (p1 p2 : FinNotEquals a b) p1 p2
finNotEqualsRefl {.1} {.fzero} {.(fsucc fzero)} (fne2 .fzero .(fsucc fzero) (inl (refl ,, refl))) (fne2 .fzero .(fsucc fzero) (inl (refl ,, refl))) = refl
finNotEqualsRefl {.1} {.fzero} {.(fsucc fzero)} (fne2 .fzero .(fsucc fzero) (inl (refl ,, refl))) (fne2 .fzero .(fsucc fzero) (inr (() ,, snd)))
finNotEqualsRefl {.1} {.(fsucc fzero)} {.fzero} (fne2 .(fsucc fzero) .fzero (inr (refl ,, refl))) (fne2 .(fsucc fzero) .fzero (inl (() ,, snd)))
finNotEqualsRefl {.1} {.(fsucc fzero)} {.fzero} (fne2 .(fsucc fzero) .fzero (inr (refl ,, refl))) (fne2 .(fsucc fzero) .fzero (inr (refl ,, refl))) = refl
finNotEqualsRefl {.(succ (succ _))} {.fzero} {.(fsucc a)} (fneN .fzero .(fsucc a) (inl (inl (refl ,, (a , refl))))) (fneN .fzero .(fsucc a) (inl (inl (refl ,, (.a , refl))))) = refl
finNotEqualsRefl {.(succ (succ _))} {.fzero} {.(fsucc a)} (fneN .fzero .(fsucc a) (inl (inl (refl ,, (a , refl))))) (fneN .fzero .(fsucc a) (inl (inr ((a₁ , ()) ,, snd))))
finNotEqualsRefl {.(succ (succ _))} {.fzero} {.(fsucc a)} (fneN .fzero .(fsucc a) (inl (inl (refl ,, (a , refl))))) (fneN .fzero .(fsucc a) (inr ((fst ,, snd) , b))) = exFalso q
where
p : fzero fsucc fst
p = _&_&_.one b
q : False
q with p
... | ()
finNotEqualsRefl {.(succ (succ _))} {.(fsucc a)} {.fzero} (fneN .(fsucc a) .fzero (inl (inr ((a , refl) ,, refl)))) (fneN .(fsucc a) .fzero (inl (inl (() ,, snd))))
finNotEqualsRefl {.(succ (succ _))} {.(fsucc a)} {.fzero} (fneN .(fsucc a) .fzero (inl (inr ((a , refl) ,, refl)))) (fneN .(fsucc a) .fzero (inl (inr ((.a , refl) ,, refl)))) = refl
finNotEqualsRefl {.(succ (succ _))} {.(fsucc a)} {.fzero} (fneN .(fsucc a) .fzero (inl (inr ((a , refl) ,, refl)))) (fneN .(fsucc a) .fzero (inr ((fst ,, snd) , b))) = exFalso q
where
p : fzero fsucc snd
p = _&_&_.two b
q : False
q with p
... | ()
finNotEqualsRefl {.(succ (succ _))} {a} {b} (fneN a b (inr (record { fst = fst ; snd = snd₁ } , snd))) (fneN .a .b (inl (inl (fst1 ,, snd₂)))) = exFalso q
where
p : fzero fsucc fst
p = transitivity (equalityCommutative fst1) (_&_&_.one snd)
q : False
q with p
... | ()
finNotEqualsRefl {.(succ (succ _))} {a} {b} (fneN a b (inr (record { fst = fst ; snd = snd1 } , snd))) (fneN .a .b (inl (inr (fst₁ ,, snd2)))) = exFalso q
where
p : fzero fsucc snd1
p = transitivity (equalityCommutative snd2) (_&_&_.two snd)
q : False
q with p
... | ()
finNotEqualsRefl {.(succ (succ _))} {.fzero} {b} (fneN fzero b (inr (record { fst = fst ; snd = snd₁ } , snd))) (fneN .fzero .b (inr ((fst1 ,, snd₂) , b1))) = exFalso q
where
p : fzero fsucc fst1
p = _&_&_.one b1
q : False
q with p
... | ()
finNotEqualsRefl {.(succ (succ _))} {.(fsucc a)} {.fzero} (fneN (fsucc a) fzero (inr (record { fst = fst ; snd = snd₁ } , snd))) (fneN .(fsucc a) .fzero (inr ((fst₁ ,, snd2) , b1))) = exFalso q
where
p : fzero fsucc snd2
p = _&_&_.two b1
q : False
q with p
... | ()
finNotEqualsRefl {.(succ (succ _))} {.(fsucc a)} {.(fsucc b)} (fneN (fsucc a) (fsucc b) (inr (record { fst = fst ; snd = snd1 } , snd))) (fneN .(fsucc a) .(fsucc b) (inr ((fst1 ,, snd2) , b1))) = ans
where
t : a fst1
t = fsuccInjective (_&_&_.one b1)
t' : a fst
t' = fsuccInjective (_&_&_.one snd)
u : b snd1
u = fsuccInjective (_&_&_.two snd)
u' : b snd2
u' = fsuccInjective (_&_&_.two b1)
equality : {c : FinSet (succ (succ _)) && FinSet (succ (succ _))} (r1 s : (fsucc a fsucc (_&&_.fst c)) & (fsucc b fsucc (_&&_.snd c)) & FinNotEquals (_&&_.fst c) (_&&_.snd c)) r1 s
equality record { one = refl ; two = refl ; three = q } record { one = refl ; two = refl ; three = q' } = applyEquality (λ t record { one = refl ; two = refl ; three = t }) (finNotEqualsRefl q q')
r : (fst ,, snd1) (fst1 ,, snd2)
r rewrite equalityCommutative t | equalityCommutative t' | equalityCommutative u | equalityCommutative u' = refl
ans : fneN (fsucc a) (fsucc b) (inr ((fst ,, snd1) , snd)) fneN (fsucc a) (fsucc b) (inr ((fst1 ,, snd2) , b1))
ans = applyEquality (λ t fneN (fsucc a) (fsucc b) (inr t)) (sgEq r equality)
finSetNotEquals : {n : } {a b : FinSet (succ n)} (a b False) FinNotEquals {n} a b
finSetNotEquals {zero} {fzero} {fzero} pr = exFalso (pr refl)
@@ -228,14 +161,6 @@ module Sets.FinSet where
toNatOfNat {succ n} zero a<n = refl
toNatOfNat {succ n} (succ a) a<n = applyEquality succ (toNatOfNat a (canRemoveSuccFrom<N a<n))
ofNatToNat : {n : } (a : FinSet n) ofNat (toNat a) (toNatSmaller a) a
ofNatToNat {zero} ()
ofNatToNat {succ n} fzero = refl
ofNatToNat {succ n} (fsucc a) = applyEquality fsucc indHyp
where
indHyp : ofNat (toNat a) (canRemoveSuccFrom<N (succPreservesInequality (toNatSmaller a))) a
indHyp rewrite <NRefl (canRemoveSuccFrom<N (succPreservesInequality (toNatSmaller a))) (toNatSmaller a) = ofNatToNat a
intoSmallerLemm : {n m : } {n<m : n <N (succ m)} {m<sm : m <N succ m} (b : FinSet n) intoSmaller n<m b ofNat m m<sm False
intoSmallerLemm {.(succ _)} {m} {n<m} fzero pr with intoSmaller (canRemoveSuccFrom<N n<m)
intoSmallerLemm {.(succ _)} {zero} {n<m} fzero refl | bl = zeroNeverGreater (canRemoveSuccFrom<N n<m)

84
Sets/FinSetWithK.agda Normal file
View File

@@ -0,0 +1,84 @@
{-# OPTIONS --safe --warning=error #-}
open import Numbers.Naturals
open import Sets.FinSet
open import LogicalFormulae
open import Numbers.NaturalsWithK
module Sets.FinSetWithK where
finNotEqualsRefl : {n : } {a b : FinSet (succ n)} (p1 p2 : FinNotEquals a b) p1 p2
finNotEqualsRefl {.1} {.fzero} {.(fsucc fzero)} (fne2 .fzero .(fsucc fzero) (inl (refl ,, refl))) (fne2 .fzero .(fsucc fzero) (inl (refl ,, refl))) = refl
finNotEqualsRefl {.1} {.fzero} {.(fsucc fzero)} (fne2 .fzero .(fsucc fzero) (inl (refl ,, refl))) (fne2 .fzero .(fsucc fzero) (inr (() ,, snd)))
finNotEqualsRefl {.1} {.(fsucc fzero)} {.fzero} (fne2 .(fsucc fzero) .fzero (inr (refl ,, refl))) (fne2 .(fsucc fzero) .fzero (inl (() ,, snd)))
finNotEqualsRefl {.1} {.(fsucc fzero)} {.fzero} (fne2 .(fsucc fzero) .fzero (inr (refl ,, refl))) (fne2 .(fsucc fzero) .fzero (inr (refl ,, refl))) = refl
finNotEqualsRefl {.(succ (succ _))} {.fzero} {.(fsucc a)} (fneN .fzero .(fsucc a) (inl (inl (refl ,, (a , refl))))) (fneN .fzero .(fsucc a) (inl (inl (refl ,, (.a , refl))))) = refl
finNotEqualsRefl {.(succ (succ _))} {.fzero} {.(fsucc a)} (fneN .fzero .(fsucc a) (inl (inl (refl ,, (a , refl))))) (fneN .fzero .(fsucc a) (inl (inr ((a₁ , ()) ,, snd))))
finNotEqualsRefl {.(succ (succ _))} {.fzero} {.(fsucc a)} (fneN .fzero .(fsucc a) (inl (inl (refl ,, (a , refl))))) (fneN .fzero .(fsucc a) (inr ((fst ,, snd) , b))) = exFalso q
where
p : fzero fsucc fst
p = _&_&_.one b
q : False
q with p
... | ()
finNotEqualsRefl {.(succ (succ _))} {.(fsucc a)} {.fzero} (fneN .(fsucc a) .fzero (inl (inr ((a , refl) ,, refl)))) (fneN .(fsucc a) .fzero (inl (inl (() ,, snd))))
finNotEqualsRefl {.(succ (succ _))} {.(fsucc a)} {.fzero} (fneN .(fsucc a) .fzero (inl (inr ((a , refl) ,, refl)))) (fneN .(fsucc a) .fzero (inl (inr ((.a , refl) ,, refl)))) = refl
finNotEqualsRefl {.(succ (succ _))} {.(fsucc a)} {.fzero} (fneN .(fsucc a) .fzero (inl (inr ((a , refl) ,, refl)))) (fneN .(fsucc a) .fzero (inr ((fst ,, snd) , b))) = exFalso q
where
p : fzero fsucc snd
p = _&_&_.two b
q : False
q with p
... | ()
finNotEqualsRefl {.(succ (succ _))} {a} {b} (fneN a b (inr (record { fst = fst ; snd = snd₁ } , snd))) (fneN .a .b (inl (inl (fst1 ,, snd₂)))) = exFalso q
where
p : fzero fsucc fst
p = transitivity (equalityCommutative fst1) (_&_&_.one snd)
q : False
q with p
... | ()
finNotEqualsRefl {.(succ (succ _))} {a} {b} (fneN a b (inr (record { fst = fst ; snd = snd1 } , snd))) (fneN .a .b (inl (inr (fst₁ ,, snd2)))) = exFalso q
where
p : fzero fsucc snd1
p = transitivity (equalityCommutative snd2) (_&_&_.two snd)
q : False
q with p
... | ()
finNotEqualsRefl {.(succ (succ _))} {.fzero} {b} (fneN fzero b (inr (record { fst = fst ; snd = snd₁ } , snd))) (fneN .fzero .b (inr ((fst1 ,, snd₂) , b1))) = exFalso q
where
p : fzero fsucc fst1
p = _&_&_.one b1
q : False
q with p
... | ()
finNotEqualsRefl {.(succ (succ _))} {.(fsucc a)} {.fzero} (fneN (fsucc a) fzero (inr (record { fst = fst ; snd = snd₁ } , snd))) (fneN .(fsucc a) .fzero (inr ((fst₁ ,, snd2) , b1))) = exFalso q
where
p : fzero fsucc snd2
p = _&_&_.two b1
q : False
q with p
... | ()
finNotEqualsRefl {.(succ (succ _))} {.(fsucc a)} {.(fsucc b)} (fneN (fsucc a) (fsucc b) (inr (record { fst = fst ; snd = snd1 } , snd))) (fneN .(fsucc a) .(fsucc b) (inr ((fst1 ,, snd2) , b1))) = ans
where
t : a fst1
t = fsuccInjective (_&_&_.one b1)
t' : a fst
t' = fsuccInjective (_&_&_.one snd)
u : b snd1
u = fsuccInjective (_&_&_.two snd)
u' : b snd2
u' = fsuccInjective (_&_&_.two b1)
equality : {c : FinSet (succ (succ _)) && FinSet (succ (succ _))} (r1 s : (fsucc a fsucc (_&&_.fst c)) & (fsucc b fsucc (_&&_.snd c)) & FinNotEquals (_&&_.fst c) (_&&_.snd c)) r1 s
equality record { one = refl ; two = refl ; three = q } record { one = refl ; two = refl ; three = q' } = applyEquality (λ t record { one = refl ; two = refl ; three = t }) (finNotEqualsRefl q q')
r : (fst ,, snd1) (fst1 ,, snd2)
r rewrite equalityCommutative t | equalityCommutative t' | equalityCommutative u | equalityCommutative u' = refl
ans : fneN (fsucc a) (fsucc b) (inr ((fst ,, snd1) , snd)) fneN (fsucc a) (fsucc b) (inr ((fst1 ,, snd2) , b1))
ans = applyEquality (λ t fneN (fsucc a) (fsucc b) (inr t)) (sgEq r equality)
ofNatToNat : {n : } (a : FinSet n) ofNat (toNat a) (toNatSmaller a) a
ofNatToNat {zero} ()
ofNatToNat {succ n} fzero = refl
ofNatToNat {succ n} (fsucc a) = applyEquality fsucc indHyp
where
indHyp : ofNat (toNat a) (canRemoveSuccFrom<N (succPreservesInequality (toNatSmaller a))) a
indHyp rewrite <NRefl (canRemoveSuccFrom<N (succPreservesInequality (toNatSmaller a))) (toNatSmaller a) = ofNatToNat a