mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-10 14:18:41 +00:00
Split out parts of Field of Fractions (#63)
This commit is contained in:
42
Fields/FieldOfFractions/Addition.agda
Normal file
42
Fields/FieldOfFractions/Addition.agda
Normal file
@@ -0,0 +1,42 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Groups.Groups
|
||||
open import Groups.Definition
|
||||
open import Groups.Lemmas
|
||||
open import Rings.Definition
|
||||
open import Rings.Lemmas
|
||||
open import Rings.IntegralDomains
|
||||
open import Fields.Fields
|
||||
open import Functions
|
||||
open import Setoids.Setoids
|
||||
open import Sets.EquivalenceRelations
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Fields.FieldOfFractions.Addition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
|
||||
|
||||
open import Fields.FieldOfFractions.Setoid I
|
||||
|
||||
fieldOfFractionsPlus : fieldOfFractionsSet → fieldOfFractionsSet → fieldOfFractionsSet
|
||||
fieldOfFractionsPlus (a ,, (b , b!=0)) (c ,, (d , d!=0)) = (((a * d) + (b * c)) ,, ((b * d) , ans))
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
ans : ((b * d) ∼ Ring.0R R) → False
|
||||
ans pr with IntegralDomain.intDom I pr
|
||||
ans pr | inl x = b!=0 x
|
||||
ans pr | inr x = d!=0 x
|
||||
|
||||
plusWellDefined : {a b c d : fieldOfFractionsSet} → (Setoid._∼_ fieldOfFractionsSetoid a c) → (Setoid._∼_ fieldOfFractionsSetoid b d) → Setoid._∼_ fieldOfFractionsSetoid (fieldOfFractionsPlus a b) (fieldOfFractionsPlus c d)
|
||||
plusWellDefined {a ,, (b , b!=0)} {c ,, (d , d!=0)} {e ,, (f , f!=0)} {g ,, (h , h!=0)} af=be ch=dg = need
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence eq
|
||||
have1 : (c * h) ∼ (d * g)
|
||||
have1 = ch=dg
|
||||
have2 : (a * f) ∼ (b * e)
|
||||
have2 = af=be
|
||||
need : (((a * d) + (b * c)) * (f * h)) ∼ ((b * d) * (((e * h) + (f * g))))
|
||||
need = transitive (transitive (Ring.*Commutative R) (transitive (Ring.*DistributesOver+ R) (Group.+WellDefined (Ring.additiveGroup R) (transitive *Associative (transitive (*WellDefined (*Commutative) reflexive) (transitive (*WellDefined *Associative reflexive) (transitive (*WellDefined (*WellDefined have2 reflexive) reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined (transitive (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative)) *Associative) reflexive) (symmetric *Associative))))))))) (transitive *Commutative (transitive (transitive (symmetric *Associative) (*WellDefined reflexive (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined have1 reflexive) (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative))))))) *Associative))))) (symmetric (Ring.*DistributesOver+ R))
|
41
Fields/FieldOfFractions/Field.agda
Normal file
41
Fields/FieldOfFractions/Field.agda
Normal file
@@ -0,0 +1,41 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Groups.Groups
|
||||
open import Groups.Definition
|
||||
open import Groups.Lemmas
|
||||
open import Rings.Definition
|
||||
open import Rings.Lemmas
|
||||
open import Rings.IntegralDomains
|
||||
open import Fields.Fields
|
||||
open import Functions
|
||||
open import Setoids.Setoids
|
||||
open import Sets.EquivalenceRelations
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Fields.FieldOfFractions.Field {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
|
||||
|
||||
open import Fields.FieldOfFractions.Setoid I
|
||||
open import Fields.FieldOfFractions.Addition I
|
||||
open import Fields.FieldOfFractions.Multiplication I
|
||||
open import Fields.FieldOfFractions.Ring I
|
||||
|
||||
fieldOfFractions : Field fieldOfFractionsRing
|
||||
Field.allInvertible fieldOfFractions (fst ,, (b , _)) prA = (b ,, (fst , ans)) , need
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
need : ((b * fst) * Ring.1R R) ∼ ((fst * b) * Ring.1R R)
|
||||
need = Ring.*WellDefined R (Ring.*Commutative R) reflexive
|
||||
ans : fst ∼ Ring.0R R → False
|
||||
ans pr = prA need'
|
||||
where
|
||||
need' : (fst * Ring.1R R) ∼ (b * Ring.0R R)
|
||||
need' = transitive (Ring.*WellDefined R pr reflexive) (transitive (transitive (Ring.*Commutative R) (Ring.timesZero R)) (symmetric (Ring.timesZero R)))
|
||||
Field.nontrivial fieldOfFractions pr = IntegralDomain.nontrivial I (symmetric (transitive (symmetric (Ring.timesZero R)) (transitive (Ring.*Commutative R) (transitive pr (Ring.identIsIdent R)))))
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
pr' : (Ring.0R R) * (Ring.1R R) ∼ (Ring.1R R) * (Ring.1R R)
|
||||
pr' = pr
|
65
Fields/FieldOfFractions/Group.agda
Normal file
65
Fields/FieldOfFractions/Group.agda
Normal file
@@ -0,0 +1,65 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Groups.Groups
|
||||
open import Groups.Definition
|
||||
open import Groups.Lemmas
|
||||
open import Rings.Definition
|
||||
open import Rings.Lemmas
|
||||
open import Rings.IntegralDomains
|
||||
open import Fields.Fields
|
||||
open import Functions
|
||||
open import Setoids.Setoids
|
||||
open import Sets.EquivalenceRelations
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Fields.FieldOfFractions.Group {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
|
||||
|
||||
open import Fields.FieldOfFractions.Setoid I
|
||||
open import Fields.FieldOfFractions.Addition I
|
||||
|
||||
fieldOfFractionsGroup : Group fieldOfFractionsSetoid fieldOfFractionsPlus
|
||||
Group.+WellDefined fieldOfFractionsGroup {a ,, (b , b!=0)} {c ,, (d , d!=0)} {e ,, (f , f!=0)} {g ,, (h , h!=0)} af=be ch=dg = need
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence eq
|
||||
have1 : (c * h) ∼ (d * g)
|
||||
have1 = ch=dg
|
||||
have2 : (a * f) ∼ (b * e)
|
||||
have2 = af=be
|
||||
need : (((a * d) + (b * c)) * (f * h)) ∼ ((b * d) * (((e * h) + (f * g))))
|
||||
need = transitive (transitive (Ring.*Commutative R) (transitive (Ring.*DistributesOver+ R) (Group.+WellDefined (Ring.additiveGroup R) (transitive *Associative (transitive (*WellDefined (*Commutative) reflexive) (transitive (*WellDefined *Associative reflexive) (transitive (*WellDefined (*WellDefined have2 reflexive) reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined (transitive (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative)) *Associative) reflexive) (symmetric *Associative))))))))) (transitive *Commutative (transitive (transitive (symmetric *Associative) (*WellDefined reflexive (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined have1 reflexive) (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative))))))) *Associative))))) (symmetric (Ring.*DistributesOver+ R))
|
||||
Group.0G fieldOfFractionsGroup = Ring.0R R ,, (Ring.1R R , IntegralDomain.nontrivial I)
|
||||
Group.inverse fieldOfFractionsGroup (a ,, b) = Group.inverse (Ring.additiveGroup R) a ,, b
|
||||
Group.+Associative fieldOfFractionsGroup {a ,, (b , b!=0)} {c ,, (d , d!=0)} {e ,, (f , f!=0)} = need
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
need : (((a * (d * f)) + (b * ((c * f) + (d * e)))) * ((b * d) * f)) ∼ ((b * (d * f)) * ((((a * d) + (b * c)) * f) + ((b * d) * e)))
|
||||
need = transitive (Ring.*Commutative R) (Ring.*WellDefined R (symmetric (Ring.*Associative R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) reflexive (Ring.*DistributesOver+ R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) reflexive (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Associative R) (Ring.*Associative R))) (transitive (Group.+Associative (Ring.additiveGroup R)) (Group.+WellDefined (Ring.additiveGroup R) (transitive (transitive (Group.+WellDefined (Ring.additiveGroup R) (transitive (Ring.*Associative R) (Ring.*Commutative R)) (Ring.*Commutative R)) (symmetric (Ring.*DistributesOver+ R))) (Ring.*Commutative R)) reflexive)))))
|
||||
Group.identRight fieldOfFractionsGroup {a ,, (b , b!=0)} = need
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
need : (((a * Ring.1R R) + (b * Group.0G (Ring.additiveGroup R))) * b) ∼ ((b * Ring.1R R) * a)
|
||||
need = transitive (transitive (Ring.*WellDefined R (transitive (Group.+WellDefined (Ring.additiveGroup R) (transitive (Ring.*Commutative R) (Ring.identIsIdent R)) reflexive) (transitive (Group.+WellDefined (Ring.additiveGroup R) reflexive (Ring.timesZero R)) (Group.identRight (Ring.additiveGroup R)))) reflexive) (Ring.*Commutative R)) (symmetric (Ring.*WellDefined R (transitive (Ring.*Commutative R) (Ring.identIsIdent R)) reflexive))
|
||||
Group.identLeft fieldOfFractionsGroup {a ,, (b , _)} = need
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
need : (((Group.0G (Ring.additiveGroup R) * b) + (Ring.1R R * a)) * b) ∼ ((Ring.1R R * b) * a)
|
||||
need = transitive (transitive (Ring.*WellDefined R (transitive (Group.+WellDefined (Ring.additiveGroup R) reflexive (Ring.identIsIdent R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) (transitive (Ring.*Commutative R) (Ring.timesZero R)) reflexive) (Group.identLeft (Ring.additiveGroup R)))) reflexive) (Ring.*Commutative R)) (Ring.*WellDefined R (symmetric (Ring.identIsIdent R)) reflexive)
|
||||
Group.invLeft fieldOfFractionsGroup {a ,, (b , _)} = need
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
need : (((Group.inverse (Ring.additiveGroup R) a * b) + (b * a)) * Ring.1R R) ∼ ((b * b) * Group.0G (Ring.additiveGroup R))
|
||||
need = transitive (transitive (transitive (Ring.*Commutative R) (Ring.identIsIdent R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Commutative R) reflexive) (transitive (symmetric (Ring.*DistributesOver+ R)) (transitive (Ring.*WellDefined R reflexive (Group.invLeft (Ring.additiveGroup R))) (Ring.timesZero R))))) (symmetric (Ring.timesZero R))
|
||||
Group.invRight fieldOfFractionsGroup {a ,, (b , _)} = need
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
need : (((a * b) + (b * Group.inverse (Ring.additiveGroup R) a)) * Ring.1R R) ∼ ((b * b) * Group.0G (Ring.additiveGroup R))
|
||||
need = transitive (transitive (transitive (Ring.*Commutative R) (Ring.identIsIdent R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Commutative R) reflexive) (transitive (symmetric (Ring.*DistributesOver+ R)) (transitive (Ring.*WellDefined R reflexive (Group.invRight (Ring.additiveGroup R))) (Ring.timesZero R))))) (symmetric (Ring.timesZero R))
|
49
Fields/FieldOfFractions/Lemmas.agda
Normal file
49
Fields/FieldOfFractions/Lemmas.agda
Normal file
@@ -0,0 +1,49 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Groups.Groups
|
||||
open import Groups.Definition
|
||||
open import Groups.Lemmas
|
||||
open import Rings.Definition
|
||||
open import Rings.Lemmas
|
||||
open import Rings.IntegralDomains
|
||||
open import Fields.Fields
|
||||
open import Functions
|
||||
open import Setoids.Setoids
|
||||
open import Sets.EquivalenceRelations
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Fields.FieldOfFractions.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
|
||||
|
||||
open import Fields.FieldOfFractions.Setoid I
|
||||
open import Fields.FieldOfFractions.Addition I
|
||||
open import Fields.FieldOfFractions.Multiplication I
|
||||
open import Fields.FieldOfFractions.Ring I
|
||||
open import Fields.FieldOfFractions.Field I
|
||||
|
||||
embedIntoFieldOfFractions : A → fieldOfFractionsSet
|
||||
embedIntoFieldOfFractions a = a ,, (Ring.1R R , IntegralDomain.nontrivial I)
|
||||
|
||||
homIntoFieldOfFractions : RingHom R fieldOfFractionsRing embedIntoFieldOfFractions
|
||||
RingHom.preserves1 homIntoFieldOfFractions = Equivalence.reflexive (Setoid.eq S)
|
||||
RingHom.ringHom homIntoFieldOfFractions {a} {b} = Equivalence.transitive (Setoid.eq S) (Ring.*WellDefined R (Equivalence.reflexive (Setoid.eq S)) (Ring.identIsIdent R)) (Ring.*Commutative R)
|
||||
GroupHom.groupHom (RingHom.groupHom homIntoFieldOfFractions) {x} {y} = need
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
need : ((x + y) * (Ring.1R R * Ring.1R R)) ∼ (Ring.1R R * ((x * Ring.1R R) + (Ring.1R R * y)))
|
||||
need = transitive (transitive (Ring.*WellDefined R reflexive (Ring.identIsIdent R)) (transitive (Ring.*Commutative R) (transitive (Ring.identIsIdent R) (Group.+WellDefined (Ring.additiveGroup R) (symmetric (transitive (Ring.*Commutative R) (Ring.identIsIdent R))) (symmetric (Ring.identIsIdent R)))))) (symmetric (Ring.identIsIdent R))
|
||||
GroupHom.wellDefined (RingHom.groupHom homIntoFieldOfFractions) x=y = transitive (Ring.*Commutative R) (Ring.*WellDefined R reflexive x=y)
|
||||
where
|
||||
open Equivalence (Setoid.eq S)
|
||||
|
||||
homIntoFieldOfFractionsIsInj : SetoidInjection S fieldOfFractionsSetoid embedIntoFieldOfFractions
|
||||
SetoidInjection.wellDefined homIntoFieldOfFractionsIsInj x=y = transitive (Ring.*Commutative R) (Ring.*WellDefined R reflexive x=y)
|
||||
where
|
||||
open Equivalence (Setoid.eq S)
|
||||
SetoidInjection.injective homIntoFieldOfFractionsIsInj x~y = transitive (symmetric identIsIdent) (transitive *Commutative (transitive x~y identIsIdent))
|
||||
where
|
||||
open Ring R
|
||||
open Setoid S
|
||||
open Equivalence eq
|
37
Fields/FieldOfFractions/Multiplication.agda
Normal file
37
Fields/FieldOfFractions/Multiplication.agda
Normal file
@@ -0,0 +1,37 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Groups.Groups
|
||||
open import Groups.Definition
|
||||
open import Groups.Lemmas
|
||||
open import Rings.Definition
|
||||
open import Rings.Lemmas
|
||||
open import Rings.IntegralDomains
|
||||
open import Fields.Fields
|
||||
open import Functions
|
||||
open import Setoids.Setoids
|
||||
open import Sets.EquivalenceRelations
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Fields.FieldOfFractions.Multiplication {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
|
||||
|
||||
open import Fields.FieldOfFractions.Setoid I
|
||||
|
||||
fieldOfFractionsTimes : fieldOfFractionsSet → fieldOfFractionsSet → fieldOfFractionsSet
|
||||
fieldOfFractionsTimes (a ,, (b , b!=0)) (c ,, (d , d!=0)) = (a * c) ,, ((b * d) , ans)
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
ans : ((b * d) ∼ Ring.0R R) → False
|
||||
ans pr with IntegralDomain.intDom I pr
|
||||
ans pr | inl x = b!=0 x
|
||||
ans pr | inr x = d!=0 x
|
||||
|
||||
fieldOfFractionsTimesWellDefined : {a b c d : fieldOfFractionsSet} → (Setoid._∼_ fieldOfFractionsSetoid a c) → (Setoid._∼_ fieldOfFractionsSetoid b d) → (Setoid._∼_ fieldOfFractionsSetoid (fieldOfFractionsTimes a b) (fieldOfFractionsTimes c d))
|
||||
fieldOfFractionsTimesWellDefined {a ,, (b , _)} {c ,, (d , _)} {e ,, (f , _)} {g ,, (h , _)} af=be ch=dg = need
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
need : ((a * c) * (f * h)) ∼ ((b * d) * (e * g))
|
||||
need = transitive (Ring.*WellDefined R reflexive (Ring.*Commutative R)) (transitive (Ring.*Associative R) (transitive (Ring.*WellDefined R (symmetric (Ring.*Associative R)) reflexive) (transitive (Ring.*WellDefined R (Ring.*WellDefined R reflexive ch=dg) reflexive) (transitive (Ring.*Commutative R) (transitive (Ring.*Associative R) (transitive (Ring.*WellDefined R (Ring.*Commutative R) reflexive) (transitive (Ring.*WellDefined R af=be reflexive) (transitive (Ring.*Associative R) (transitive (Ring.*WellDefined R (transitive (symmetric (Ring.*Associative R)) (transitive (Ring.*WellDefined R reflexive (Ring.*Commutative R)) (Ring.*Associative R))) reflexive) (symmetric (Ring.*Associative R)))))))))))
|
717
Fields/FieldOfFractions/Order.agda
Normal file
717
Fields/FieldOfFractions/Order.agda
Normal file
@@ -0,0 +1,717 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Groups.Groups
|
||||
open import Groups.Definition
|
||||
open import Groups.Lemmas
|
||||
open import Rings.Definition
|
||||
open import Rings.Orders.Partial.Definition
|
||||
open import Rings.Orders.Total.Definition
|
||||
open import Rings.Orders.Total.Lemmas
|
||||
open import Rings.Lemmas
|
||||
open import Rings.IntegralDomains
|
||||
open import Fields.Fields
|
||||
open import Functions
|
||||
open import Setoids.Setoids
|
||||
open import Setoids.Orders
|
||||
open import Sets.EquivalenceRelations
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Fields.FieldOfFractions.Order {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {c} A} {pOrder : SetoidPartialOrder S _<_} {pRing : PartiallyOrderedRing R pOrder} (I : IntegralDomain R) (order : TotallyOrderedRing pRing) where
|
||||
|
||||
open import Fields.FieldOfFractions.Setoid I
|
||||
open import Fields.FieldOfFractions.Ring I
|
||||
|
||||
open SetoidTotalOrder (TotallyOrderedRing.total order)
|
||||
open import Rings.Orders.Partial.Lemmas
|
||||
open PartiallyOrderedRing pRing
|
||||
|
||||
fieldOfFractionsComparison : Rel fieldOfFractionsSet
|
||||
fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) with totality (Ring.0R R) denomA
|
||||
fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) with totality (Ring.0R R) denomB
|
||||
fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inl 0<denomB) = (numA * denomB) < (numB * denomA)
|
||||
fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inr denomB<0) = (numB * denomA) < (numA * denomB)
|
||||
fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inr 0=denomB = exFalso (denomB!=0 (symmetric 0=denomB))
|
||||
where
|
||||
open Equivalence (Setoid.eq S)
|
||||
fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) with totality (Ring.0R R) denomB
|
||||
fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inl 0<denomB) = (numB * denomA) < (numA * denomB)
|
||||
fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inr denomB<0) = (numA * denomB) < (numB * denomA)
|
||||
fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inr 0=denomB = exFalso (denomB!=0 (symmetric 0=denomB))
|
||||
where
|
||||
open Equivalence (Setoid.eq S)
|
||||
fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inr 0=denomA = exFalso (denomA!=0 (symmetric 0=denomA))
|
||||
where
|
||||
open Equivalence (Setoid.eq S)
|
||||
|
||||
fieldOfFractionsOrderWellDefinedLeft : {x y z : fieldOfFractionsSet} → fieldOfFractionsComparison x y → Setoid._∼_ fieldOfFractionsSetoid x z → fieldOfFractionsComparison z y
|
||||
fieldOfFractionsOrderWellDefinedLeft {(numX ,, (denomX , denomX!=0))} {(numY ,, (denomY , denomY!=0))} {(numZ ,, (denomZ , denomZ!=0))} x<y x=z with totality (Ring.0R R) denomZ
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) with totality (Ring.0R R) denomY
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) with totality (Ring.0R R) denomX
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inl (inl 0<denomX) with totality (Ring.0R R) denomY
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inl (inl 0<denomX) | inl (inl _) = s
|
||||
where
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
have : ((numX * denomY) * denomZ) < ((numY * denomX) * denomZ)
|
||||
have = ringCanMultiplyByPositive pRing 0<denomZ x<y
|
||||
p : ((numX * denomZ) * denomY) < ((numY * denomX) * denomZ)
|
||||
p = SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) reflexive have
|
||||
q : ((denomX * numZ) * denomY) < ((numY * denomX) * denomZ)
|
||||
q = SetoidPartialOrder.<WellDefined pOrder (*WellDefined x=z reflexive) reflexive p
|
||||
r : ((numZ * denomY) * denomX) < ((numY * denomZ) * denomX)
|
||||
r = SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) *Commutative) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) q
|
||||
s : (numZ * denomY) < (numY * denomZ)
|
||||
s = ringCanCancelPositive order 0<denomX r
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inl (inl 0<denomX) | inl (inr x) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomY x))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inl (inl 0<denomX) | inr x = exFalso (denomY!=0 (symmetric x))
|
||||
where
|
||||
open Equivalence (Setoid.eq S)
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inl (inr denomX<0) with totality (Ring.0R R) denomY
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inl (inr denomX<0) | inl (inl _) = ringCanCancelNegative order denomX<0 r
|
||||
where
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
p : ((numY * denomX) * denomZ) < ((numX * denomZ) * denomY)
|
||||
p = SetoidPartialOrder.<WellDefined pOrder reflexive (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (ringCanMultiplyByPositive pRing 0<denomZ x<y)
|
||||
q : ((numY * denomX) * denomZ) < ((denomX * numZ) * denomY)
|
||||
q = SetoidPartialOrder.<WellDefined pOrder reflexive (*WellDefined x=z reflexive) p
|
||||
r : ((numY * denomZ) * denomX) < ((numZ * denomY) * denomX)
|
||||
r = SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (symmetric *Associative) *Commutative) q
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inl (inr denomX<0) | inl (inr x) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomY x))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inl (inr denomX<0) | inr x = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inr 0=denomX = exFalso (denomX!=0 (Equivalence.symmetric (Setoid.eq S) 0=denomX))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) with totality (Ring.0R R) denomX
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inl 0<denomX) with totality (Ring.0R R) denomY
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inl 0<denomX) | inl (inl 0<denomY) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomY denomY<0))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inl 0<denomX) | inl (inr _) = ringCanCancelPositive order 0<denomX r
|
||||
where
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
p : ((numY * denomX) * denomZ) < ((numX * denomY) * denomZ)
|
||||
p = ringCanMultiplyByPositive pRing 0<denomZ x<y
|
||||
q : ((numY * denomX) * denomZ) < ((denomX * numZ) * denomY)
|
||||
q = SetoidPartialOrder.<WellDefined pOrder reflexive (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (*WellDefined x=z reflexive)))) p
|
||||
r : ((numY * denomZ) * denomX) < ((numZ * denomY) * denomX)
|
||||
r = SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (symmetric *Associative) *Commutative) q
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inl 0<denomX) | inr x = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inr denomX<0) with totality (Ring.0R R) denomY
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inr denomX<0) | inl (inl 0<denomY) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomY denomY<0))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inr denomX<0) | inl (inr _) = ringCanCancelNegative order denomX<0 q
|
||||
where
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
p : ((numX * denomY) * denomZ) < ((numY * denomX) * denomZ)
|
||||
p = ringCanMultiplyByPositive pRing 0<denomZ x<y
|
||||
q : ((numZ * denomY) * denomX) < ((numY * denomZ) * denomX)
|
||||
q = SetoidPartialOrder.<WellDefined pOrder (transitive (*WellDefined *Commutative reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive x=z) (transitive *Commutative (transitive (symmetric *Associative) *Commutative))))) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) p
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inr denomX<0) | inr x = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inr 0=denomX = exFalso (denomX!=0 (Equivalence.symmetric (Setoid.eq S) 0=denomX))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inr 0=denomY = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) 0=denomY))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) with totality (Ring.0R R) denomY
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) with totality (Ring.0R R) denomX
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inl (inl 0<denomX) with totality (Ring.0R R) denomY
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inl (inl 0<denomX) | inl (inl _) = ringCanCancelPositive order 0<denomX (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive x=z) (transitive (*WellDefined reflexive (*Commutative)) (transitive *Associative (*WellDefined *Commutative reflexive))))) p)
|
||||
where
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
p : ((numY * denomX) * denomZ) < ((denomY * numX) * denomZ)
|
||||
p = ringCanMultiplyByNegative pRing denomZ<0 (SetoidPartialOrder.<WellDefined pOrder *Commutative reflexive x<y)
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inl (inl 0<denomX) | inl (inr denomY<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomY denomY<0))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inl (inl 0<denomX) | inr x = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inl (inr denomX<0) with totality (Ring.0R R) denomY
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inl (inr denomX<0) | inl (inl _) = ringCanCancelNegative order denomX<0 (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined x=z reflexive) (transitive (symmetric *Associative) *Commutative))))) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) p)
|
||||
where
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
p : ((numX * denomY) * denomZ) < ((numY * denomX) * denomZ)
|
||||
p = ringCanMultiplyByNegative pRing denomZ<0 x<y
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inl (inr denomX<0) | inl (inr denomY<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder denomY<0 0<denomY))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inl (inr denomX<0) | inr 0=denomY = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) 0=denomY))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inr x = exFalso (denomX!=0 (symmetric x))
|
||||
where
|
||||
open Equivalence (Setoid.eq S)
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) with totality (Ring.0R R) denomX
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inl 0<denomX) with totality (Ring.0R R) denomY
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inl 0<denomX) | inl (inl 0<denomY) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomY denomY<0))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inl 0<denomX) | inl (inr _) = ringCanCancelPositive order 0<denomX (SetoidPartialOrder.<WellDefined pOrder (transitive (*WellDefined *Commutative reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive x=z) (transitive *Associative (transitive *Commutative *Associative))))) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (ringCanMultiplyByNegative pRing denomZ<0 x<y))
|
||||
where
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inl 0<denomX) | inr x = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inr denomX<0) with totality (Ring.0R R) denomY
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inr denomX<0) | inl (inl 0<denomY) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomY denomY<0))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inr denomX<0) | inl (inr _) = ringCanCancelNegative order denomX<0 (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (*WellDefined *Commutative reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive x=z) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (*WellDefined *Commutative reflexive)))))) (ringCanMultiplyByNegative pRing denomZ<0 x<y))
|
||||
where
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inr denomX<0) | inr x = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inr x = exFalso (denomX!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inr x = exFalso (denomY!=0 (symmetric x))
|
||||
where
|
||||
open Equivalence (Setoid.eq S)
|
||||
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inr 0=denomZ = exFalso (denomZ!=0 (symmetric 0=denomZ))
|
||||
where
|
||||
open Equivalence (Setoid.eq S)
|
||||
|
||||
fieldOfFractionsOrderWellDefinedRight : {x y z : fieldOfFractionsSet} → fieldOfFractionsComparison x y → Setoid._∼_ (fieldOfFractionsSetoid) y z → fieldOfFractionsComparison x z
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z with totality (Ring.0R R) denomX
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inl 0<denomX) with totality (Ring.0R R) denomZ
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inl 0<denomX) | inl (inl 0<denomZ) with totality (Ring.0R R) denomY
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inl 0<denomX) | inl (inl 0<denomZ) | inl (inl 0<denomY) = ringCanCancelPositive order 0<denomY (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined y=z reflexive) (transitive (symmetric *Associative) *Commutative))))) (ringCanMultiplyByPositive pRing 0<denomZ x<y))
|
||||
where
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inl 0<denomX) | inl (inl 0<denomZ) | inl (inr denomY<0) = ringCanCancelNegative order denomY<0 (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined y=z reflexive) (transitive (symmetric *Associative) *Commutative))))) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (ringCanMultiplyByPositive pRing 0<denomZ x<y))
|
||||
where
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inl 0<denomX) | inl (inl 0<denomZ) | inr x = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inl 0<denomX) | inl (inr denomZ<0) with totality (Ring.0R R) denomY
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inl 0<denomX) | inl (inr denomZ<0) | inl (inl 0<denomY) = ringCanCancelPositive order 0<denomY (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined y=z reflexive) (transitive (symmetric *Associative) *Commutative))))) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (ringCanMultiplyByNegative pRing denomZ<0 x<y))
|
||||
where
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inl 0<denomX) | inl (inr denomZ<0) | inl (inr denomY<0) = ringCanCancelNegative order denomY<0 (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive (*Associative) (transitive (*WellDefined y=z reflexive) (transitive (symmetric *Associative) *Commutative))))) (ringCanMultiplyByNegative pRing denomZ<0 x<y))
|
||||
where
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inl 0<denomX) | inl (inr denomZ<0) | inr x = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inl 0<denomX) | inr x = exFalso (denomZ!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inr denomX<0) with totality (Ring.0R R) denomZ
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inr denomX<0) | inl (inl 0<denomZ) with totality (Ring.0R R) denomY
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inr denomX<0) | inl (inl 0<denomZ) | inl (inl 0<denomY) = ringCanCancelPositive order 0<denomY (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined y=z reflexive) (transitive (symmetric *Associative) *Commutative))))) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (ringCanMultiplyByPositive pRing 0<denomZ x<y))
|
||||
where
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inr denomX<0) | inl (inl 0<denomZ) | inl (inr denomY<0) = ringCanCancelNegative order denomY<0 (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined y=z reflexive) (transitive (symmetric *Associative) *Commutative))))) (ringCanMultiplyByPositive pRing 0<denomZ x<y))
|
||||
where
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inr denomX<0) | inl (inl 0<denomZ) | inr x = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inr denomX<0) | inl (inr denomZ<0) with totality (Ring.0R R) denomY
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inr denomX<0) | inl (inr denomZ<0) | inl (inl 0<denomY) = ringCanCancelPositive order 0<denomY (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined y=z reflexive) (transitive (symmetric *Associative) *Commutative))))) (ringCanMultiplyByNegative pRing denomZ<0 x<y))
|
||||
where
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inr denomX<0) | inl (inr denomZ<0) | inl (inr denomY<0) = ringCanCancelNegative order denomY<0 (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined y=z reflexive) (transitive (symmetric *Associative) *Commutative))))) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (ringCanMultiplyByNegative pRing denomZ<0 x<y))
|
||||
where
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inr denomX<0) | inl (inr denomZ<0) | inr x = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inr denomX<0) | inr x = exFalso (denomZ!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inr x = exFalso (denomX!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
|
||||
swapLemma : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} (R : Ring S _+_ _*_) {x y z : A} → Setoid._∼_ S ((x * y) * z) ((x * z) * y)
|
||||
swapLemma {S = S} R = transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
|
||||
fieldOfFractionsOrder : SetoidPartialOrder fieldOfFractionsSetoid fieldOfFractionsComparison
|
||||
SetoidPartialOrder.<WellDefined (fieldOfFractionsOrder) {a} {b} {c} {d} a=b c=d a<c = fieldOfFractionsOrderWellDefinedRight {b} {c} {d} (fieldOfFractionsOrderWellDefinedLeft {a} {c} {b} a<c a=b) c=d
|
||||
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr with totality (Ring.0R R) aDenom
|
||||
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inl 0<aDenom) with totality (Ring.0R R) aDenom
|
||||
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inl 0<aDenom) | inl (inl _) = SetoidPartialOrder.irreflexive pOrder pr
|
||||
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inl 0<aDenom) | inl (inr aDenom<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<aDenom aDenom<0))
|
||||
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inl 0<aDenom) | inr x = exFalso (aDenom!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inr aDenom<0) with totality (Ring.0R R) aDenom
|
||||
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inr aDenom<0) | inl (inl 0<aDenom) = SetoidPartialOrder.irreflexive pOrder pr
|
||||
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inr aDenom<0) | inl (inr _) = SetoidPartialOrder.irreflexive pOrder pr
|
||||
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inr aDenom<0) | inr x = exFalso (aDenom!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inr x = exFalso (aDenom!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c with totality (Ring.0R R) denomA
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) with totality (Ring.0R R) denomC
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) with totality (Ring.0R R) denomB
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inl x) with totality (Ring.0R R) denomC
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inl 0<denomB) | inl (inl _) = ringCanCancelPositive order 0<denomB p
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
inter : ((numA * denomB) * denomC) < ((numB * denomA) * denomC)
|
||||
inter = ringCanMultiplyByPositive pRing 0<denomC a<b
|
||||
p : ((numA * denomC) * denomB) < ((numC * denomA) * denomB)
|
||||
p = SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) reflexive inter) (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (ringCanMultiplyByPositive pRing 0<denomA b<c))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inl 0<denomB) | inl (inr denomC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomC denomC<0))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inl 0<denomB) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inr denomB<0) with totality (Ring.0R R) denomC
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inr denomB<0) | inl (inl _) = ringCanCancelNegative order denomB<0 (SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) reflexive (ringCanMultiplyByPositive pRing 0<denomA b<c)) (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (ringCanMultiplyByPositive pRing 0<denomC a<b)))
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inr denomB<0) | inl (inr denomC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomC denomC<0))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inr denomB<0) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) with totality (Ring.0R R) denomB
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inl (inl 0<denomB) with totality (Ring.0R R) denomC
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inl (inl 0<denomB) | inl (inl 0<denomC) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomC denomC<0))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inl (inl 0<denomB) | inl (inr _) = ringCanCancelPositive order 0<denomB (SetoidPartialOrder.<Transitive pOrder have (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByNegative pRing denomC<0 a<b)))
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
have : ((numC * denomA) * denomB) < ((numB * denomC) * denomA)
|
||||
have = SetoidPartialOrder.<WellDefined pOrder (swapLemma R) reflexive (ringCanMultiplyByPositive pRing 0<denomA b<c)
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inl (inl 0<denomB) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inl (inr denomB<0) with totality (Ring.0R R) denomC
|
||||
... | (inl (inl 0<denomC)) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomC denomC<0))
|
||||
... | (inl (inr _)) = ringCanCancelNegative order denomB<0 (SetoidPartialOrder.<Transitive pOrder have (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByPositive pRing 0<denomA b<c)))
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
have : ((numA * denomC) * denomB) < ((numB * denomA) * denomC)
|
||||
have = SetoidPartialOrder.<WellDefined pOrder (swapLemma R) reflexive (ringCanMultiplyByNegative pRing denomC<0 a<b)
|
||||
... | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) with totality (Ring.0R R) denomC
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) with totality (Ring.0R R) denomB
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inl 0<denomB) with totality (Ring.0R R) denomC
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inl 0<denomB) | inl (inl _) = ringCanCancelPositive order 0<denomB (SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByNegative pRing denomA<0 b<c)) have)
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
have : ((numB * denomA) * denomC) < ((numA * denomC) * denomB)
|
||||
have = SetoidPartialOrder.<WellDefined pOrder reflexive (swapLemma R) (ringCanMultiplyByPositive pRing 0<denomC a<b)
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inl 0<denomB) | inl (inr denomC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomC denomC<0))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inl 0<denomB) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inr denomB<0) with totality (Ring.0R R) denomC
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inr denomB<0) | inl (inl _) = ringCanCancelNegative order denomB<0 (SetoidPartialOrder.<Transitive pOrder have (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByNegative pRing denomA<0 b<c)))
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
have : ((numA * denomC) * denomB) < ((numB * denomA) * denomC)
|
||||
have = SetoidPartialOrder.<WellDefined pOrder (swapLemma R) reflexive (ringCanMultiplyByPositive pRing 0<denomC a<b)
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inr denomB<0) | inl (inr denomC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomC denomC<0))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inr denomB<0) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) with totality (Ring.0R R) denomB
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inl 0<denomB) with totality (Ring.0R R) denomC
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inl 0<denomB) | inl (inl 0<denomC) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomC denomC<0))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inl 0<denomB) | inl (inr _) = ringCanCancelPositive order 0<denomB (SetoidPartialOrder.<Transitive pOrder have (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByNegative pRing denomA<0 b<c)))
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
have : ((numA * denomC) * denomB) < ((numB * denomA) * denomC)
|
||||
have = SetoidPartialOrder.<WellDefined pOrder (swapLemma R) reflexive (ringCanMultiplyByNegative pRing denomC<0 a<b)
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inl 0<denomB) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inr denomB<0) with totality (Ring.0R R) denomC
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inr denomB<0) | inl (inl 0<denomC) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomC denomC<0))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inr denomB<0) | inl (inr _) = ringCanCancelNegative order denomB<0 (SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByNegative pRing denomA<0 b<c)) have)
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
have : ((numB * denomA) * denomC) < ((numA * denomC) * denomB)
|
||||
have = SetoidPartialOrder.<WellDefined pOrder reflexive (swapLemma R) (ringCanMultiplyByNegative pRing denomC<0 a<b)
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inr denomB<0) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
|
||||
fieldOfFractionsTotalOrder : SetoidTotalOrder fieldOfFractionsOrder
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) with totality (Ring.0R R) denomA
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) with totality (Ring.0R R) denomB
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inl 0<denomB) with totality (Ring.0R R) denomA
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inl 0<denomB) | inl (inl _) with totality (numA * denomB) (numB * denomA)
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inl 0<denomB) | inl (inl _) | inl (inl x) = inl (inl x)
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inl 0<denomB) | inl (inl _) | inl (inr x) = inl (inr x)
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inl 0<denomB) | inl (inl _) | inr x = inr (Equivalence.transitive (Setoid.eq S) x (Ring.*Commutative R))
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inl 0<denomB) | inl (inr denomA<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomA denomA<0))
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inl 0<denomB) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inr denomB<0) with totality (Ring.0R R) denomA
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inr denomB<0) | inl (inl _) with totality (numB * denomA) (numA * denomB)
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inr denomB<0) | inl (inl _) | inl (inl x) = inl (inl x)
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inr denomB<0) | inl (inl _) | inl (inr x) = inl (inr x)
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inr denomB<0) | inl (inl _) | inr x = inr (Equivalence.symmetric (Setoid.eq S) (Equivalence.transitive (Setoid.eq S) (Ring.*Commutative R) x))
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inr denomB<0) | inl (inr denomA<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomA denomA<0))
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inr denomB<0) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) with totality (Ring.0R R) denomB
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inl 0<denomB) with totality (Ring.0R R) denomA
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inl 0<denomB) | inl (inl 0<denomA) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomA denomA<0))
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inl 0<denomB) | inl (inr _) with totality (numB * denomA) (numA * denomB)
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inl 0<denomB) | inl (inr _) | inl (inl x) = inl (inl x)
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inl 0<denomB) | inl (inr _) | inl (inr x) = inl (inr x)
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inl 0<denomB) | inl (inr _) | inr x = inr (Equivalence.transitive (Setoid.eq S) (Equivalence.symmetric (Setoid.eq S) x) (Ring.*Commutative R))
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inl 0<denomB) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inr denomB<0) with totality (Ring.0R R) denomA
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inr denomB<0) | inl (inl 0<denomA) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomA denomA<0))
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inr denomB<0) | inl (inr _) with totality (numA * denomB) (numB * denomA)
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inr denomB<0) | inl (inr _) | inl (inl x) = inl (inl x)
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inr denomB<0) | inl (inr _) | inl (inr x) = inl (inr x)
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inr denomB<0) | inl (inr _) | inr x = inr (Equivalence.transitive (Setoid.eq S) x (Ring.*Commutative R))
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inr denomB<0) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
|
||||
ineqLemma : {x y : A} → (Ring.0R R) < (x * y) → (Ring.0R R) < x → (Ring.0R R) < y
|
||||
ineqLemma {x} {y} 0<xy 0<x with totality (Ring.0R R) y
|
||||
ineqLemma {x} {y} 0<xy 0<x | inl (inl 0<y) = 0<y
|
||||
ineqLemma {x} {y} 0<xy 0<x | inl (inr y<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<xy (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing y<0 0<x))))
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
ineqLemma {x} {y} 0<xy 0<x | inr 0=y = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive (*WellDefined reflexive (symmetric 0=y)) (Ring.timesZero R)) 0<xy))
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
|
||||
ineqLemma' : {x y : A} → (Ring.0R R) < (x * y) → x < (Ring.0R R) → y < (Ring.0R R)
|
||||
ineqLemma' {x} {y} 0<xy x<0 with totality (Ring.0R R) y
|
||||
... | inl (inl 0<y) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<xy (SetoidPartialOrder.<WellDefined pOrder *Commutative (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing x<0 0<y))))
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
... | inl (inr y<0) = y<0
|
||||
... | (inr 0=y) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive (*WellDefined reflexive (symmetric 0=y)) (Ring.timesZero R)) 0<xy))
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
|
||||
ineqLemma'' : {x y : A} → (x * y) < (Ring.0R R) → (Ring.0R R) < x → y < (Ring.0R R)
|
||||
ineqLemma'' {x} {y} xy<0 0<x with totality (Ring.0R R) y
|
||||
... | inl (inl 0<y) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder xy<0 (orderRespectsMultiplication 0<x 0<y)))
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
... | inl (inr y<0) = y<0
|
||||
... | (inr 0=y) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder (transitive (*WellDefined reflexive (symmetric 0=y)) (Ring.timesZero R)) reflexive xy<0))
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
|
||||
ineqLemma''' : {x y : A} → (x * y) < (Ring.0R R) → x < (Ring.0R R) → (Ring.0R R) < y
|
||||
ineqLemma''' {x} {y} xy<0 x<0 with totality (Ring.0R R) y
|
||||
... | inl (inl 0<y) = 0<y
|
||||
... | inl (inr y<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder xy<0 (SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative (Ring.timesZero R)) reflexive (ringCanMultiplyByNegative pRing y<0 x<0))))
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
... | inr 0=y = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder (transitive (*WellDefined reflexive (symmetric 0=y)) (Ring.timesZero R)) reflexive xy<0))
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence (Setoid.eq S)
|
||||
|
||||
fieldOfFractionsPOrderedRing : PartiallyOrderedRing fieldOfFractionsRing (SetoidTotalOrder.partial fieldOfFractionsTotalOrder)
|
||||
PartiallyOrderedRing.orderRespectsAddition fieldOfFractionsPOrderedRing {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) with totality (Ring.0R R) (denomA * denomC)
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) with totality (Ring.0R R) (denomB * denomC)
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) with totality (Ring.0R R) denomA
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inl 0<dA) with totality (Ring.0R R) denomB
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inl 0<dA) | inl (inl 0<dB) = SetoidPartialOrder.<WellDefined pOrder (symmetric *Associative) (symmetric *Associative) (ringCanMultiplyByPositive pRing 0<dC (SetoidPartialOrder.<WellDefined pOrder (transitive (Group.+WellDefined additiveGroup *Commutative *Commutative) (transitive (symmetric *DistributesOver+) *Commutative)) (transitive (Group.+WellDefined additiveGroup *Commutative *Commutative) (transitive (symmetric *DistributesOver+) *Commutative)) ans))
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
0<dC : 0R < denomC
|
||||
0<dC with totality 0R denomC
|
||||
0<dC | inl (inl x) = x
|
||||
0<dC | inl (inr dC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dBdC (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dC<0 0<dB))))
|
||||
0<dC | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
p : ((numA * denomC) * denomB) < ((numB * denomC) * denomA)
|
||||
p = SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByPositive pRing 0<dC a<b)
|
||||
ans : ((((numA * denomC) * denomB) + ((denomA * numC) * denomB))) < ((((numB * denomC) * denomA) + ((denomB * numC) * denomA)))
|
||||
ans = SetoidPartialOrder.<WellDefined pOrder reflexive (Group.+WellDefined additiveGroup reflexive (transitive (*WellDefined *Commutative reflexive) (transitive (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (*WellDefined *Commutative reflexive)))) (PartiallyOrderedRing.orderRespectsAddition pRing p ((denomA * numC) * denomB))
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inl 0<dA) | inl (inr dB<0) = exFalso bad
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
dC<0 : denomC < 0R
|
||||
dC<0 with totality 0R denomC
|
||||
... | inl (inl x) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dBdC (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByPositive pRing x dB<0))))
|
||||
... | inl (inr x) = x
|
||||
... | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
bad : False
|
||||
bad = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dAdC (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dC<0 0<dA)))
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inl 0<dA) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inr dA<0) with totality (Ring.0R R) denomB
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inr dA<0) | inl (inl 0<dB) = exFalso bad
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
0<dC : 0R < denomC
|
||||
0<dC with totality 0R denomC
|
||||
0<dC | inl (inl x) = x
|
||||
0<dC | inl (inr dC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dBdC (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dC<0 0<dB))))
|
||||
0<dC | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
dC<0 : denomC < 0R
|
||||
dC<0 with totality 0R denomC
|
||||
dC<0 | inl (inl 0<dC) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dAdC (SetoidPartialOrder.<WellDefined pOrder *Commutative (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dA<0 0<dC))))
|
||||
dC<0 | inl (inr x) = x
|
||||
dC<0 | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
bad : False
|
||||
bad = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dC dC<0)
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inr dA<0) | inl (inr dB<0) = SetoidPartialOrder.<WellDefined pOrder (symmetric *Associative) (symmetric *Associative) (ringCanMultiplyByNegative pRing dC<0 (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *DistributesOver+) *Commutative) (transitive (symmetric *DistributesOver+) *Commutative) have''))
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
dC<0 : denomC < 0R
|
||||
dC<0 = ineqLemma' 0<dAdC dA<0
|
||||
have : ((numB * denomA) * denomC) < ((numA * denomB) * denomC)
|
||||
have = ringCanMultiplyByNegative pRing dC<0 a<b
|
||||
have' : (denomA * (numB * denomC)) < (denomB * (numA * denomC))
|
||||
have' = SetoidPartialOrder.<WellDefined pOrder (transitive (*WellDefined *Commutative reflexive) (symmetric *Associative)) (transitive (*WellDefined *Commutative reflexive) (symmetric *Associative)) have
|
||||
have'' : ((denomA * (numB * denomC)) + (denomA * (denomB * numC))) < ((denomB * (numA * denomC)) + (denomB * (denomA * numC)))
|
||||
have'' = SetoidPartialOrder.<WellDefined pOrder reflexive (Group.+WellDefined additiveGroup reflexive (transitive *Associative (transitive (*WellDefined *Commutative reflexive) (symmetric *Associative)))) (PartiallyOrderedRing.orderRespectsAddition pRing have' (denomA * (denomB * numC)))
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inr dA<0) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inr dBdC<0) with totality (Ring.0R R) denomA
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inr dBdC<0) | inl (inl 0<dA) with totality (Ring.0R R) denomB
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inr dBdC<0) | inl (inl 0<dA) | inl (inl 0<dB) = exFalso bad
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
0<dC : 0R < denomC
|
||||
0<dC = ineqLemma 0<dAdC 0<dA
|
||||
dC<0 : denomC < 0R
|
||||
dC<0 = ineqLemma'' dBdC<0 0<dB
|
||||
bad : False
|
||||
bad = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dC dC<0)
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inr dBdC<0) | inl (inl 0<dA) | inl (inr dB<0) = SetoidPartialOrder.<WellDefined pOrder (symmetric *Associative) (symmetric *Associative) (ringCanMultiplyByPositive pRing 0<dC ans)
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
0<dC : 0R < denomC
|
||||
0<dC = ineqLemma 0<dAdC 0<dA
|
||||
have : ((numB * denomA) * denomC) < ((numA * denomB) * denomC)
|
||||
have = ringCanMultiplyByPositive pRing 0<dC a<b
|
||||
have' : (((numB * denomC) * denomA) + ((denomB * numC) * denomA)) < (((numA * denomC) * denomB) + ((denomB * numC) * denomA))
|
||||
have' = PartiallyOrderedRing.orderRespectsAddition pRing (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) have) _
|
||||
ans : (((numB * denomC) + (denomB * numC)) * denomA) < (((numA * denomC) + (denomA * numC)) * denomB)
|
||||
ans = SetoidPartialOrder.<WellDefined pOrder (transitive (Group.+WellDefined additiveGroup *Commutative *Commutative) (transitive (symmetric *DistributesOver+) *Commutative)) (transitive (Group.+WellDefined additiveGroup *Commutative (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative))) (transitive (symmetric *DistributesOver+) *Commutative)) have'
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inr dBdC<0) | inl (inl 0<dA) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inr dBdC<0) | inl (inr dA<0) with totality (Ring.0R R) denomB
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inr dBdC<0) | inl (inr dA<0) | inl (inl 0<dB) = SetoidPartialOrder.<WellDefined pOrder (symmetric *Associative) (symmetric *Associative) (ringCanMultiplyByNegative pRing dC<0 (SetoidPartialOrder.<WellDefined pOrder (transitive (Group.+WellDefined additiveGroup *Commutative *Commutative) (transitive (transitive (Group.+WellDefined additiveGroup reflexive (transitive *Associative (transitive (*WellDefined *Commutative reflexive) (symmetric *Associative)))) (symmetric *DistributesOver+)) *Commutative)) (transitive (Group.+WellDefined additiveGroup *Commutative *Commutative) (transitive (symmetric *DistributesOver+) *Commutative)) have))
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
dC<0 : denomC < 0R
|
||||
dC<0 = ineqLemma'' dBdC<0 0<dB
|
||||
have : (((numA * denomC) * denomB) + ((denomB * numC) * denomA)) < (((numB * denomC) * denomA) + ((denomB * numC) * denomA))
|
||||
have = PartiallyOrderedRing.orderRespectsAddition pRing (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByNegative pRing dC<0 a<b)) _
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inr dBdC<0) | inl (inr dA<0) | inl (inr dB<0) = exFalso bad
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
dC<0 : denomC < 0R
|
||||
dC<0 = ineqLemma' 0<dAdC dA<0
|
||||
0<dC : 0R < denomC
|
||||
0<dC = ineqLemma''' dBdC<0 dB<0
|
||||
bad : False
|
||||
bad = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dC dC<0)
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inr dBdC<0) | inl (inr dA<0) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inr dBdC<0) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inr 0=dBdC with IntegralDomain.intDom I (Equivalence.symmetric (Setoid.eq S) 0=dBdC)
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inr 0=dBdC | inl x = exFalso (denomB!=0 x)
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inr 0=dBdC | inr x = exFalso (denomC!=0 x)
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) with totality (Ring.0R R) (denomB * denomC)
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inl 0<dBdC) with totality (Ring.0R R) denomA
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inl 0<dBdC) | inl (inl 0<dA) with totality (Ring.0R R) denomB
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inl 0<dBdC) | inl (inl 0<dA) | inl (inl 0<dB) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dC dC<0))
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
0<dC : 0R < denomC
|
||||
0<dC = ineqLemma 0<dBdC 0<dB
|
||||
dC<0 : denomC < 0R
|
||||
dC<0 = ineqLemma'' dAdC<0 0<dA
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inl 0<dBdC) | inl (inl 0<dA) | inl (inr dB<0) = SetoidPartialOrder.<WellDefined pOrder (symmetric *Associative) (symmetric *Associative) (ringCanMultiplyByNegative pRing dC<0 (SetoidPartialOrder.<WellDefined pOrder (transitive (Group.+WellDefined additiveGroup (transitive (*WellDefined *Commutative reflexive) (symmetric *Associative)) *Commutative) (transitive (symmetric *DistributesOver+) *Commutative)) (transitive (Group.+WellDefined additiveGroup (transitive (*WellDefined *Commutative reflexive) (symmetric *Associative)) (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative))) (transitive (symmetric *DistributesOver+) *Commutative)) have))
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
dC<0 : denomC < 0R
|
||||
dC<0 = ineqLemma'' dAdC<0 0<dA
|
||||
have : (((numA * denomB) * denomC) + ((denomA * numC) * denomB)) < (((numB * denomA) * denomC) + ((denomA * numC) * denomB))
|
||||
have = PartiallyOrderedRing.orderRespectsAddition pRing (ringCanMultiplyByNegative pRing dC<0 a<b) _
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inl 0<dBdC) | inl (inl 0<dA) | inr 0=dB = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) 0=dB))
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inl 0<dBdC) | inl (inr dA<0) with totality (Ring.0R R) denomB
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inl 0<dBdC) | inl (inr dA<0) | inl (inl 0<dB) = SetoidPartialOrder.<WellDefined pOrder (symmetric *Associative) (symmetric *Associative) (ringCanMultiplyByPositive pRing 0<dC (SetoidPartialOrder.<WellDefined pOrder (transitive (Group.+WellDefined additiveGroup *Commutative *Commutative) (transitive (transitive (Group.+WellDefined additiveGroup (transitive *Commutative (transitive (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) *Commutative)) (transitive *Associative (transitive (*WellDefined *Commutative reflexive) (symmetric *Associative)))) (symmetric *DistributesOver+)) *Commutative)) (transitive (Group.+WellDefined additiveGroup *Commutative *Commutative) (transitive (transitive (Group.+WellDefined additiveGroup (transitive *Commutative (transitive (*WellDefined *Commutative reflexive) (symmetric *Associative))) reflexive) (symmetric *DistributesOver+)) *Commutative)) have))
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
0<dC : 0R < denomC
|
||||
0<dC = ineqLemma 0<dBdC 0<dB
|
||||
have : (((numB * denomA) * denomC) + ((denomA * numC) * denomB)) < (((numA * denomB) * denomC) + ((denomA * numC) * denomB))
|
||||
have = PartiallyOrderedRing.orderRespectsAddition pRing (ringCanMultiplyByPositive pRing 0<dC a<b) _
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inl 0<dBdC) | inl (inr dA<0) | inl (inr dB<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dC dC<0))
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
dC<0 : denomC < 0R
|
||||
dC<0 = ineqLemma' 0<dBdC dB<0
|
||||
0<dC : 0R < denomC
|
||||
0<dC = ineqLemma''' dAdC<0 dA<0
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inl 0<dBdC) | inl (inr dA<0) | inr 0=dB = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) 0=dB))
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inl 0<dBdC) | inr 0=dA = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) 0=dA))
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inr dBdC<0) with totality (Ring.0R R) denomA
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inr dBdC<0) | inl (inl 0<dA) with totality (Ring.0R R) denomB
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inr dBdC<0) | inl (inl 0<dA) | inl (inl 0<dB) = SetoidPartialOrder.<WellDefined pOrder (symmetric *Associative) (symmetric *Associative) (ringCanMultiplyByNegative pRing dC<0 (SetoidPartialOrder.<WellDefined pOrder (transitive (transitive (Group.+WellDefined additiveGroup *Commutative *Commutative) (Group.+WellDefined additiveGroup (transitive *Commutative (transitive (*WellDefined *Commutative reflexive) (symmetric *Associative))) reflexive)) (transitive (symmetric *DistributesOver+) *Commutative)) (transitive (transitive (Group.+WellDefined additiveGroup *Commutative *Commutative) (Group.+WellDefined additiveGroup (transitive (transitive *Associative (*WellDefined *Commutative reflexive)) *Commutative) (transitive *Associative (transitive (*WellDefined *Commutative reflexive) (symmetric *Associative))))) (transitive (symmetric *DistributesOver+) *Commutative)) have))
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
dC<0 : denomC < 0R
|
||||
dC<0 = ineqLemma'' dAdC<0 0<dA
|
||||
have : (((numB * denomA) * denomC) + ((denomB * numC) * denomA)) < (((numA * denomB) * denomC) + ((denomB * numC) * denomA))
|
||||
have = PartiallyOrderedRing.orderRespectsAddition pRing (ringCanMultiplyByNegative pRing dC<0 a<b) _
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inr dBdC<0) | inl (inl 0<dA) | inl (inr dB<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder dC<0 0<dC))
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
dC<0 : denomC < 0R
|
||||
dC<0 = ineqLemma'' dAdC<0 0<dA
|
||||
0<dC : 0R < denomC
|
||||
0<dC = ineqLemma''' dBdC<0 dB<0
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inr dBdC<0) | inl (inl 0<dA) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inr dBdC<0) | inl (inr dA<0) with totality (Ring.0R R) denomB
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inr dBdC<0) | inl (inr dA<0) | inl (inl 0<dB) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dC dC<0))
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
0<dC : 0R < denomC
|
||||
0<dC = ineqLemma''' dAdC<0 dA<0
|
||||
dC<0 : denomC < 0R
|
||||
dC<0 = ineqLemma'' dBdC<0 0<dB
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inr dBdC<0) | inl (inr dA<0) | inl (inr dB<0) = SetoidPartialOrder.<WellDefined pOrder (symmetric *Associative) (symmetric *Associative) (ringCanMultiplyByPositive pRing 0<dC (SetoidPartialOrder.<WellDefined pOrder (transitive (Group.+WellDefined additiveGroup *Commutative *Commutative) (transitive (Group.+WellDefined additiveGroup (transitive *Commutative (transitive (*WellDefined *Commutative reflexive) (symmetric *Associative))) reflexive) (transitive (symmetric *DistributesOver+) *Commutative))) (transitive (Group.+WellDefined additiveGroup *Commutative *Commutative) (transitive (transitive (Group.+WellDefined additiveGroup (transitive *Commutative (transitive (*WellDefined *Commutative reflexive) (symmetric *Associative))) (transitive *Commutative (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative)))) (symmetric *DistributesOver+)) *Commutative)) have))
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
0<dC : 0R < denomC
|
||||
0<dC = ineqLemma''' dAdC<0 dA<0
|
||||
have : (((numA * denomB) * denomC) + ((denomA * numC) * denomB)) < (((numB * denomA) * denomC) + ((denomA * numC) * denomB))
|
||||
have = PartiallyOrderedRing.orderRespectsAddition pRing (ringCanMultiplyByPositive pRing 0<dC a<b) _
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inr dBdC<0) | inl (inr dA<0) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inr dBdC<0) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inr 0=dBdC with IntegralDomain.intDom I (Equivalence.symmetric (Setoid.eq S) 0=dBdC)
|
||||
... | inl x = exFalso (denomB!=0 x)
|
||||
... | inr x = exFalso (denomC!=0 x)
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inr (0=dAdC) with IntegralDomain.intDom I (Equivalence.symmetric (Setoid.eq S) 0=dAdC)
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inr 0=dAdC | inl x = exFalso (denomA!=0 x)
|
||||
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inr 0=dAdC | inr x = exFalso (denomC!=0 x)
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} t u with totality (Ring.0R R) (Ring.1R R)
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) with totality (Ring.0R R) (denomA * denomB)
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) with totality (Ring.0R R) denomB
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inl 0<dB) with totality (Ring.0R R) denomA
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inl 0<dB) | inl (inl 0<dA) = SetoidPartialOrder.<WellDefined pOrder (symmetric (transitive *Commutative (Ring.timesZero R))) (symmetric (transitive *Commutative identIsIdent)) 0<nAnB
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
0<nA : 0R < numA
|
||||
0<nA = SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative (Ring.timesZero R)) (transitive *Commutative identIsIdent) 0<a
|
||||
0<nB : 0R < numB
|
||||
0<nB = SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative (Ring.timesZero R)) (transitive *Commutative identIsIdent) 0<b
|
||||
0<nAnB : 0R < (numA * numB)
|
||||
0<nAnB = SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative (Ring.timesZero R)) reflexive (ringCanMultiplyByPositive pRing 0<nB 0<nA)
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inl 0<dB) | inl (inr dA<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dAdB (SetoidPartialOrder.<WellDefined pOrder *Commutative (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dA<0 0<dB))))
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inl 0<dB) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inr dB<0) with totality (Ring.0R R) denomA
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inr dB<0) | inl (inl 0<dA) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dAdB (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dB<0 0<dA))))
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inr dB<0) | inl (inr dA<0) = SetoidPartialOrder.<WellDefined pOrder (symmetric (transitive *Commutative (Ring.timesZero R))) (symmetric (transitive *Commutative identIsIdent)) 0<nAnB
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
nB<0 : numB < 0R
|
||||
nB<0 = SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative identIsIdent) (transitive *Commutative (Ring.timesZero R)) 0<b
|
||||
nA<0 : numA < 0R
|
||||
nA<0 = SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative identIsIdent) (transitive *Commutative (Ring.timesZero R)) 0<a
|
||||
0<nAnB : 0R < (numA * numB)
|
||||
0<nAnB = SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative (Ring.timesZero R)) *Commutative (ringCanMultiplyByNegative pRing nA<0 nB<0)
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inr dB<0) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) with totality (Ring.0R R) denomB
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inl 0<denomB) with totality (Ring.0R R) denomA
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inl 0<denomB) | inl (inl 0<denomA) = exFalso f
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
f : False
|
||||
f with PartiallyOrderedRing.orderRespectsMultiplication pRing 0<denomA 0<denomB
|
||||
... | bl = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder bl dAdB<0)
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inl 0<denomB) | inl (inr denomA<0) = SetoidPartialOrder.<WellDefined pOrder (symmetric (transitive *Commutative identIsIdent)) (symmetric (transitive *Commutative (Ring.timesZero R))) ans
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
0<nB : 0R < numB
|
||||
0<nB = SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative (Ring.timesZero R)) (transitive *Commutative identIsIdent) 0<b
|
||||
nA<0 : numA < 0R
|
||||
nA<0 = SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative identIsIdent) (transitive *Commutative (Ring.timesZero R)) 0<a
|
||||
ans : (numA * numB) < 0R
|
||||
ans = SetoidPartialOrder.<WellDefined pOrder *Commutative (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing nA<0 0<nB)
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inl 0<denomB) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inr denomB<0) with totality (Ring.0R R) denomA
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inr denomB<0) | inl (inl 0<denomA) = SetoidPartialOrder.<WellDefined pOrder (symmetric (transitive *Commutative identIsIdent)) (symmetric (transitive *Commutative (Ring.timesZero R))) nAnB<0
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
nB<0 : numB < 0R
|
||||
nB<0 = SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative identIsIdent) (transitive *Commutative (Ring.timesZero R)) 0<b
|
||||
0<nA : 0R < numA
|
||||
0<nA = SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative (Ring.timesZero R)) (transitive *Commutative identIsIdent) 0<a
|
||||
nAnB<0 : (numA * numB) < 0R
|
||||
nAnB<0 = SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing nB<0 0<nA)
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inr denomB<0) | inl (inr denomA<0) = exFalso f
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
h : 0R < (denomA * denomB)
|
||||
h = SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative (Ring.timesZero R)) reflexive (ringCanMultiplyByNegative pRing denomB<0 denomA<0)
|
||||
f : False
|
||||
f = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder dAdB<0 h)
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inr denomB<0) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inr 0=dAdB with IntegralDomain.intDom I (Equivalence.symmetric (Setoid.eq S) 0=dAdB)
|
||||
... | inl x = exFalso (denomA!=0 x)
|
||||
... | inr x = exFalso (denomB!=0 x)
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inr 1<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 1<0 (SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative (Ring.timesZero R)) identIsIdent (ringCanMultiplyByNegative pRing 1<0 1<0))))
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Ring R
|
||||
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inr x = exFalso (IntegralDomain.nontrivial I (Equivalence.symmetric (Setoid.eq S) x))
|
||||
|
||||
fieldOfFractionsOrderedRing : TotallyOrderedRing fieldOfFractionsPOrderedRing
|
||||
TotallyOrderedRing.total fieldOfFractionsOrderedRing = fieldOfFractionsTotalOrder
|
60
Fields/FieldOfFractions/Ring.agda
Normal file
60
Fields/FieldOfFractions/Ring.agda
Normal file
@@ -0,0 +1,60 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Groups.Groups
|
||||
open import Groups.Definition
|
||||
open import Groups.Lemmas
|
||||
open import Rings.Definition
|
||||
open import Rings.Lemmas
|
||||
open import Rings.IntegralDomains
|
||||
open import Fields.Fields
|
||||
open import Functions
|
||||
open import Setoids.Setoids
|
||||
open import Sets.EquivalenceRelations
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Fields.FieldOfFractions.Ring {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
|
||||
|
||||
open import Fields.FieldOfFractions.Setoid I
|
||||
open import Fields.FieldOfFractions.Addition I
|
||||
open import Fields.FieldOfFractions.Group I
|
||||
open import Fields.FieldOfFractions.Multiplication I
|
||||
|
||||
fieldOfFractionsRing : Ring fieldOfFractionsSetoid fieldOfFractionsPlus fieldOfFractionsTimes
|
||||
Ring.additiveGroup fieldOfFractionsRing = fieldOfFractionsGroup
|
||||
Ring.*WellDefined fieldOfFractionsRing {a} {b} {c} {d} = fieldOfFractionsTimesWellDefined {a} {b} {c} {d}
|
||||
Ring.1R fieldOfFractionsRing = Ring.1R R ,, (Ring.1R R , IntegralDomain.nontrivial I)
|
||||
Ring.groupIsAbelian fieldOfFractionsRing {a ,, (b , _)} {c ,, (d , _)} = need
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
need : (((a * d) + (b * c)) * (d * b)) ∼ ((b * d) * ((c * b) + (d * a)))
|
||||
need = transitive (Ring.*Commutative R) (Ring.*WellDefined R (Ring.*Commutative R) (transitive (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Commutative R) (Ring.*Commutative R)) (Ring.groupIsAbelian R)))
|
||||
Ring.*Associative fieldOfFractionsRing {a ,, (b , _)} {c ,, (d , _)} {e ,, (f , _)} = need
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
need : ((a * (c * e)) * ((b * d) * f)) ∼ ((b * (d * f)) * ((a * c) * e))
|
||||
need = transitive (Ring.*WellDefined R (Ring.*Associative R) (symmetric (Ring.*Associative R))) (Ring.*Commutative R)
|
||||
Ring.*Commutative fieldOfFractionsRing {a ,, (b , _)} {c ,, (d , _)} = need
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
need : ((a * c) * (d * b)) ∼ ((b * d) * (c * a))
|
||||
need = transitive (Ring.*Commutative R) (Ring.*WellDefined R (Ring.*Commutative R) (Ring.*Commutative R))
|
||||
Ring.*DistributesOver+ fieldOfFractionsRing {a ,, (b , _)} {c ,, (d , _)} {e ,, (f , _)} = need
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence eq
|
||||
inter : b * (a * ((c * f) + (d * e))) ∼ (((a * c) * (b * f)) + ((b * d) * (a * e)))
|
||||
inter = transitive *Associative (transitive *DistributesOver+ (Group.+WellDefined additiveGroup (transitive *Associative (transitive (*WellDefined (transitive (*WellDefined (*Commutative) reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative))) reflexive) (symmetric *Associative))) (transitive *Associative (transitive (*WellDefined (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) reflexive) (symmetric *Associative)))))
|
||||
need : ((a * ((c * f) + (d * e))) * ((b * d) * (b * f))) ∼ ((b * (d * f)) * (((a * c) * (b * f)) + ((b * d) * (a * e))))
|
||||
need = transitive (Ring.*WellDefined R reflexive (Ring.*WellDefined R reflexive (Ring.*Commutative R))) (transitive (Ring.*WellDefined R reflexive (Ring.*Associative R)) (transitive (Ring.*Commutative R) (transitive (Ring.*WellDefined R (Ring.*WellDefined R (symmetric (Ring.*Associative R)) reflexive) reflexive) (transitive (symmetric (Ring.*Associative R)) (Ring.*WellDefined R reflexive inter)))))
|
||||
Ring.identIsIdent fieldOfFractionsRing {a ,, (b , _)} = need
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
need : (((Ring.1R R) * a) * b) ∼ (((Ring.1R R * b)) * a)
|
||||
need = transitive (Ring.*WellDefined R (Ring.identIsIdent R) reflexive) (transitive (Ring.*Commutative R) (Ring.*WellDefined R (symmetric (Ring.identIsIdent R)) reflexive))
|
44
Fields/FieldOfFractions/Setoid.agda
Normal file
44
Fields/FieldOfFractions/Setoid.agda
Normal file
@@ -0,0 +1,44 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Groups.Groups
|
||||
open import Groups.Definition
|
||||
open import Groups.Lemmas
|
||||
open import Rings.Definition
|
||||
open import Rings.Lemmas
|
||||
open import Rings.IntegralDomains
|
||||
open import Fields.Fields
|
||||
open import Functions
|
||||
open import Setoids.Setoids
|
||||
open import Sets.EquivalenceRelations
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Fields.FieldOfFractions.Setoid {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
|
||||
|
||||
fieldOfFractionsSet : Set (a ⊔ b)
|
||||
fieldOfFractionsSet = (A && (Sg A (λ a → (Setoid._∼_ S a (Ring.0R R) → False))))
|
||||
|
||||
fieldOfFractionsSetoid : Setoid fieldOfFractionsSet
|
||||
Setoid._∼_ fieldOfFractionsSetoid (a ,, (b , b!=0)) (c ,, (d , d!=0)) = Setoid._∼_ S (a * d) (b * c)
|
||||
Equivalence.reflexive (Setoid.eq fieldOfFractionsSetoid) {a ,, (b , b!=0)} = Ring.*Commutative R
|
||||
Equivalence.symmetric (Setoid.eq fieldOfFractionsSetoid) {a ,, (b , b!=0)} {c ,, (d , d!=0)} ad=bc = transitive (Ring.*Commutative R) (transitive (symmetric ad=bc) (Ring.*Commutative R))
|
||||
where
|
||||
open Equivalence (Setoid.eq S)
|
||||
Equivalence.transitive (Setoid.eq fieldOfFractionsSetoid) {a ,, (b , b!=0)} {c ,, (d , d!=0)} {e ,, (f , f!=0)} ad=bc cf=de = p5
|
||||
where
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence eq
|
||||
p : (a * d) * f ∼ (b * c) * f
|
||||
p = Ring.*WellDefined R ad=bc reflexive
|
||||
p2 : (a * f) * d ∼ b * (d * e)
|
||||
p2 = transitive (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive p (transitive (symmetric *Associative) (*WellDefined reflexive cf=de)))
|
||||
p3 : (a * f) * d ∼ (b * e) * d
|
||||
p3 = transitive p2 (transitive (*WellDefined reflexive *Commutative) *Associative)
|
||||
p4 : (d ∼ 0R) || ((a * f) ∼ (b * e))
|
||||
p4 = cancelIntDom I (transitive *Commutative (transitive p3 *Commutative))
|
||||
p5 : (a * f) ∼ (b * e)
|
||||
p5 with p4
|
||||
p5 | inl d=0 = exFalso (d!=0 d=0)
|
||||
p5 | inr x = x
|
Reference in New Issue
Block a user