Split out parts of Field of Fractions (#63)

This commit is contained in:
Patrick Stevens
2019-11-02 21:31:46 +00:00
committed by GitHub
parent 1325236359
commit e4daab7153
12 changed files with 374 additions and 224 deletions

View File

@@ -1,194 +0,0 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Definition
open import Groups.Lemmas
open import Rings.Definition
open import Rings.Lemmas
open import Rings.IntegralDomains
open import Fields.Fields
open import Functions
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.FieldOfFractions where
fieldOfFractionsSet : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} IntegralDomain R Set (a b)
fieldOfFractionsSet {A = A} {S = S} {R = R} I = (A && (Sg A (λ a (Setoid.__ S a (Ring.0R R) False))))
fieldOfFractionsSetoid : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (I : IntegralDomain R) Setoid (fieldOfFractionsSet I)
Setoid.__ (fieldOfFractionsSetoid {S = S} {_*_ = _*_} I) (a ,, (b , b!=0)) (c ,, (d , d!=0)) = Setoid.__ S (a * d) (b * c)
Equivalence.reflexive (Setoid.eq (fieldOfFractionsSetoid {R = R} I)) {a ,, (b , b!=0)} = Ring.*Commutative R
Equivalence.symmetric (Setoid.eq (fieldOfFractionsSetoid {S = S} {R = R} I)) {a ,, (b , b!=0)} {c ,, (d , d!=0)} ad=bc = transitive (Ring.*Commutative R) (transitive (symmetric ad=bc) (Ring.*Commutative R))
where
open Equivalence (Setoid.eq S)
Equivalence.transitive (Setoid.eq (fieldOfFractionsSetoid {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I)) {a ,, (b , b!=0)} {c ,, (d , d!=0)} {e ,, (f , f!=0)} ad=bc cf=de = p5
where
open Setoid S
open Ring R
open Equivalence eq
p : (a * d) * f (b * c) * f
p = Ring.*WellDefined R ad=bc reflexive
p2 : (a * f) * d b * (d * e)
p2 = transitive (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive p (transitive (symmetric *Associative) (*WellDefined reflexive cf=de)))
p3 : (a * f) * d (b * e) * d
p3 = transitive p2 (transitive (*WellDefined reflexive *Commutative) *Associative)
p4 : (d 0R) || ((a * f) (b * e))
p4 = cancelIntDom I (transitive *Commutative (transitive p3 *Commutative))
p5 : (a * f) (b * e)
p5 with p4
p5 | inl d=0 = exFalso (d!=0 d=0)
p5 | inr x = x
fieldOfFractionsPlus : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (I : IntegralDomain R) fieldOfFractionsSet I fieldOfFractionsSet I fieldOfFractionsSet I
fieldOfFractionsPlus {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I (a ,, (b , b!=0)) (c ,, (d , d!=0)) = (((a * d) + (b * c)) ,, ((b * d) , ans))
where
open Setoid S
open Ring R
ans : ((b * d) Ring.0R R) False
ans pr with IntegralDomain.intDom I pr
ans pr | inl x = b!=0 x
ans pr | inr x = d!=0 x
fieldOfFractionsTimes : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (I : IntegralDomain R) fieldOfFractionsSet I fieldOfFractionsSet I fieldOfFractionsSet I
fieldOfFractionsTimes {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I (a ,, (b , b!=0)) (c ,, (d , d!=0)) = (a * c) ,, ((b * d) , ans)
where
open Setoid S
open Ring R
ans : ((b * d) Ring.0R R) False
ans pr with IntegralDomain.intDom I pr
ans pr | inl x = b!=0 x
ans pr | inr x = d!=0 x
fieldOfFractionsRing : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (I : IntegralDomain R) Ring (fieldOfFractionsSetoid I) (fieldOfFractionsPlus I) (fieldOfFractionsTimes I)
Group.+WellDefined (Ring.additiveGroup (fieldOfFractionsRing {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I)) {a ,, (b , b!=0)} {c ,, (d , d!=0)} {e ,, (f , f!=0)} {g ,, (h , h!=0)} af=be ch=dg = need
where
open Setoid S
open Ring R
open Equivalence eq
have1 : (c * h) (d * g)
have1 = ch=dg
have2 : (a * f) (b * e)
have2 = af=be
need : (((a * d) + (b * c)) * (f * h)) ((b * d) * (((e * h) + (f * g))))
need = transitive (transitive (Ring.*Commutative R) (transitive (Ring.*DistributesOver+ R) (Group.+WellDefined (Ring.additiveGroup R) (transitive *Associative (transitive (*WellDefined (*Commutative) reflexive) (transitive (*WellDefined *Associative reflexive) (transitive (*WellDefined (*WellDefined have2 reflexive) reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined (transitive (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative)) *Associative) reflexive) (symmetric *Associative))))))))) (transitive *Commutative (transitive (transitive (symmetric *Associative) (*WellDefined reflexive (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined have1 reflexive) (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative))))))) *Associative))))) (symmetric (Ring.*DistributesOver+ R))
Group.0G (Ring.additiveGroup (fieldOfFractionsRing {R = R} I)) = Ring.0R R ,, (Ring.1R R , IntegralDomain.nontrivial I)
Group.inverse (Ring.additiveGroup (fieldOfFractionsRing {R = R} I)) (a ,, b) = Group.inverse (Ring.additiveGroup R) a ,, b
Group.+Associative (Ring.additiveGroup (fieldOfFractionsRing {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I)) {a ,, (b , b!=0)} {c ,, (d , d!=0)} {e ,, (f , f!=0)} = need
where
open Setoid S
open Equivalence eq
need : (((a * (d * f)) + (b * ((c * f) + (d * e)))) * ((b * d) * f)) ((b * (d * f)) * ((((a * d) + (b * c)) * f) + ((b * d) * e)))
need = transitive (Ring.*Commutative R) (Ring.*WellDefined R (symmetric (Ring.*Associative R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) reflexive (Ring.*DistributesOver+ R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) reflexive (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Associative R) (Ring.*Associative R))) (transitive (Group.+Associative (Ring.additiveGroup R)) (Group.+WellDefined (Ring.additiveGroup R) (transitive (transitive (Group.+WellDefined (Ring.additiveGroup R) (transitive (Ring.*Associative R) (Ring.*Commutative R)) (Ring.*Commutative R)) (symmetric (Ring.*DistributesOver+ R))) (Ring.*Commutative R)) reflexive)))))
Group.identRight (Ring.additiveGroup (fieldOfFractionsRing {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I)) {a ,, (b , b!=0)} = need
where
open Setoid S
open Equivalence eq
need : (((a * Ring.1R R) + (b * Group.0G (Ring.additiveGroup R))) * b) ((b * Ring.1R R) * a)
need = transitive (transitive (Ring.*WellDefined R (transitive (Group.+WellDefined (Ring.additiveGroup R) (transitive (Ring.*Commutative R) (Ring.identIsIdent R)) reflexive) (transitive (Group.+WellDefined (Ring.additiveGroup R) reflexive (Ring.timesZero R)) (Group.identRight (Ring.additiveGroup R)))) reflexive) (Ring.*Commutative R)) (symmetric (Ring.*WellDefined R (transitive (Ring.*Commutative R) (Ring.identIsIdent R)) reflexive))
Group.identLeft (Ring.additiveGroup (fieldOfFractionsRing {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I)) {a ,, (b , _)} = need
where
open Setoid S
open Equivalence eq
need : (((Group.0G (Ring.additiveGroup R) * b) + (Ring.1R R * a)) * b) ((Ring.1R R * b) * a)
need = transitive (transitive (Ring.*WellDefined R (transitive (Group.+WellDefined (Ring.additiveGroup R) reflexive (Ring.identIsIdent R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) (transitive (Ring.*Commutative R) (Ring.timesZero R)) reflexive) (Group.identLeft (Ring.additiveGroup R)))) reflexive) (Ring.*Commutative R)) (Ring.*WellDefined R (symmetric (Ring.identIsIdent R)) reflexive)
Group.invLeft (Ring.additiveGroup (fieldOfFractionsRing {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I)) {a ,, (b , _)} = need
where
open Setoid S
open Equivalence eq
need : (((Group.inverse (Ring.additiveGroup R) a * b) + (b * a)) * Ring.1R R) ((b * b) * Group.0G (Ring.additiveGroup R))
need = transitive (transitive (transitive (Ring.*Commutative R) (Ring.identIsIdent R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Commutative R) reflexive) (transitive (symmetric (Ring.*DistributesOver+ R)) (transitive (Ring.*WellDefined R reflexive (Group.invLeft (Ring.additiveGroup R))) (Ring.timesZero R))))) (symmetric (Ring.timesZero R))
Group.invRight (Ring.additiveGroup (fieldOfFractionsRing {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I)) {a ,, (b , _)} = need
where
open Setoid S
open Equivalence eq
need : (((a * b) + (b * Group.inverse (Ring.additiveGroup R) a)) * Ring.1R R) ((b * b) * Group.0G (Ring.additiveGroup R))
need = transitive (transitive (transitive (Ring.*Commutative R) (Ring.identIsIdent R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Commutative R) reflexive) (transitive (symmetric (Ring.*DistributesOver+ R)) (transitive (Ring.*WellDefined R reflexive (Group.invRight (Ring.additiveGroup R))) (Ring.timesZero R))))) (symmetric (Ring.timesZero R))
Ring.*WellDefined (fieldOfFractionsRing {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I) {a ,, (b , _)} {c ,, (d , _)} {e ,, (f , _)} {g ,, (h , _)} af=be ch=dg = need
where
open Setoid S
open Equivalence eq
need : ((a * c) * (f * h)) ((b * d) * (e * g))
need = transitive (Ring.*WellDefined R reflexive (Ring.*Commutative R)) (transitive (Ring.*Associative R) (transitive (Ring.*WellDefined R (symmetric (Ring.*Associative R)) reflexive) (transitive (Ring.*WellDefined R (Ring.*WellDefined R reflexive ch=dg) reflexive) (transitive (Ring.*Commutative R) (transitive (Ring.*Associative R) (transitive (Ring.*WellDefined R (Ring.*Commutative R) reflexive) (transitive (Ring.*WellDefined R af=be reflexive) (transitive (Ring.*Associative R) (transitive (Ring.*WellDefined R (transitive (symmetric (Ring.*Associative R)) (transitive (Ring.*WellDefined R reflexive (Ring.*Commutative R)) (Ring.*Associative R))) reflexive) (symmetric (Ring.*Associative R)))))))))))
Ring.1R (fieldOfFractionsRing {R = R} I) = Ring.1R R ,, (Ring.1R R , IntegralDomain.nontrivial I)
Ring.groupIsAbelian (fieldOfFractionsRing {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I) {a ,, (b , _)} {c ,, (d , _)} = need
where
open Setoid S
open Equivalence eq
need : (((a * d) + (b * c)) * (d * b)) ((b * d) * ((c * b) + (d * a)))
need = transitive (Ring.*Commutative R) (Ring.*WellDefined R (Ring.*Commutative R) (transitive (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Commutative R) (Ring.*Commutative R)) (Ring.groupIsAbelian R)))
Ring.*Associative (fieldOfFractionsRing {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I) {a ,, (b , _)} {c ,, (d , _)} {e ,, (f , _)} = need
where
open Setoid S
open Equivalence eq
need : ((a * (c * e)) * ((b * d) * f)) ((b * (d * f)) * ((a * c) * e))
need = transitive (Ring.*WellDefined R (Ring.*Associative R) (symmetric (Ring.*Associative R))) (Ring.*Commutative R)
Ring.*Commutative (fieldOfFractionsRing {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I) {a ,, (b , _)} {c ,, (d , _)} = need
where
open Setoid S
open Equivalence eq
need : ((a * c) * (d * b)) ((b * d) * (c * a))
need = transitive (Ring.*Commutative R) (Ring.*WellDefined R (Ring.*Commutative R) (Ring.*Commutative R))
Ring.*DistributesOver+ (fieldOfFractionsRing {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I) {a ,, (b , _)} {c ,, (d , _)} {e ,, (f , _)} = need
where
open Setoid S
open Ring R
open Equivalence eq
inter : b * (a * ((c * f) + (d * e))) (((a * c) * (b * f)) + ((b * d) * (a * e)))
inter = transitive *Associative (transitive *DistributesOver+ (Group.+WellDefined additiveGroup (transitive *Associative (transitive (*WellDefined (transitive (*WellDefined (*Commutative) reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative))) reflexive) (symmetric *Associative))) (transitive *Associative (transitive (*WellDefined (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) reflexive) (symmetric *Associative)))))
need : ((a * ((c * f) + (d * e))) * ((b * d) * (b * f))) ((b * (d * f)) * (((a * c) * (b * f)) + ((b * d) * (a * e))))
need = transitive (Ring.*WellDefined R reflexive (Ring.*WellDefined R reflexive (Ring.*Commutative R))) (transitive (Ring.*WellDefined R reflexive (Ring.*Associative R)) (transitive (Ring.*Commutative R) (transitive (Ring.*WellDefined R (Ring.*WellDefined R (symmetric (Ring.*Associative R)) reflexive) reflexive) (transitive (symmetric (Ring.*Associative R)) (Ring.*WellDefined R reflexive inter)))))
Ring.identIsIdent (fieldOfFractionsRing {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I) {a ,, (b , _)} = need
where
open Setoid S
open Equivalence eq
need : (((Ring.1R R) * a) * b) (((Ring.1R R * b)) * a)
need = transitive (Ring.*WellDefined R (Ring.identIsIdent R) reflexive) (transitive (Ring.*Commutative R) (Ring.*WellDefined R (symmetric (Ring.identIsIdent R)) reflexive))
fieldOfFractions : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (I : IntegralDomain R) Field (fieldOfFractionsRing I)
Field.allInvertible (fieldOfFractions {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I) (fst ,, (b , _)) prA = (b ,, (fst , ans)) , need
where
open Setoid S
open Equivalence eq
need : ((b * fst) * Ring.1R R) ((fst * b) * Ring.1R R)
need = Ring.*WellDefined R (Ring.*Commutative R) reflexive
ans : fst Ring.0R R False
ans pr = prA need'
where
need' : (fst * Ring.1R R) (b * Ring.0R R)
need' = transitive (Ring.*WellDefined R pr reflexive) (transitive (transitive (Ring.*Commutative R) (Ring.timesZero R)) (symmetric (Ring.timesZero R)))
Field.nontrivial (fieldOfFractions {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I) pr = IntegralDomain.nontrivial I (symmetric (transitive (symmetric (Ring.timesZero R)) (transitive (Ring.*Commutative R) (transitive pr (Ring.identIsIdent R)))))
where
open Setoid S
open Equivalence eq
pr' : (Ring.0R R) * (Ring.1R R) (Ring.1R R) * (Ring.1R R)
pr' = pr
embedIntoFieldOfFractions : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (I : IntegralDomain R) A fieldOfFractionsSet I
embedIntoFieldOfFractions {R = R} I a = a ,, (Ring.1R R , IntegralDomain.nontrivial I)
homIntoFieldOfFractions : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (I : IntegralDomain R) RingHom R (fieldOfFractionsRing I) (embedIntoFieldOfFractions I)
RingHom.preserves1 (homIntoFieldOfFractions {S = S} I) = Equivalence.reflexive (Setoid.eq S)
RingHom.ringHom (homIntoFieldOfFractions {S = S} {R = R} I) {a} {b} = Equivalence.transitive (Setoid.eq S) (Ring.*WellDefined R (Equivalence.reflexive (Setoid.eq S)) (Ring.identIsIdent R)) (Ring.*Commutative R)
GroupHom.groupHom (RingHom.groupHom (homIntoFieldOfFractions {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} I)) {x} {y} = need
where
open Setoid S
open Equivalence eq
need : ((x + y) * (Ring.1R R * Ring.1R R)) (Ring.1R R * ((x * Ring.1R R) + (Ring.1R R * y)))
need = transitive (transitive (Ring.*WellDefined R reflexive (Ring.identIsIdent R)) (transitive (Ring.*Commutative R) (transitive (Ring.identIsIdent R) (Group.+WellDefined (Ring.additiveGroup R) (symmetric (transitive (Ring.*Commutative R) (Ring.identIsIdent R))) (symmetric (Ring.identIsIdent R)))))) (symmetric (Ring.identIsIdent R))
GroupHom.wellDefined (RingHom.groupHom (homIntoFieldOfFractions {S = S} {R = R} I)) x=y = transitive (Ring.*Commutative R) (Ring.*WellDefined R reflexive x=y)
where
open Equivalence (Setoid.eq S)
homIntoFieldOfFractionsIsInj : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (I : IntegralDomain R) SetoidInjection S (fieldOfFractionsSetoid I) (embedIntoFieldOfFractions I)
SetoidInjection.wellDefined (homIntoFieldOfFractionsIsInj {S = S} {R = R} I) x=y = transitive (Ring.*Commutative R) (Ring.*WellDefined R reflexive x=y)
where
open Equivalence (Setoid.eq S)
SetoidInjection.injective (homIntoFieldOfFractionsIsInj {S = S} {R = R} I) x~y = transitive (symmetric identIsIdent) (transitive *Commutative (transitive x~y identIsIdent))
where
open Ring R
open Setoid S
open Equivalence eq

View File

@@ -0,0 +1,42 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Definition
open import Groups.Lemmas
open import Rings.Definition
open import Rings.Lemmas
open import Rings.IntegralDomains
open import Fields.Fields
open import Functions
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.FieldOfFractions.Addition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
open import Fields.FieldOfFractions.Setoid I
fieldOfFractionsPlus : fieldOfFractionsSet fieldOfFractionsSet fieldOfFractionsSet
fieldOfFractionsPlus (a ,, (b , b!=0)) (c ,, (d , d!=0)) = (((a * d) + (b * c)) ,, ((b * d) , ans))
where
open Setoid S
open Ring R
ans : ((b * d) Ring.0R R) False
ans pr with IntegralDomain.intDom I pr
ans pr | inl x = b!=0 x
ans pr | inr x = d!=0 x
plusWellDefined : {a b c d : fieldOfFractionsSet} (Setoid.__ fieldOfFractionsSetoid a c) (Setoid.__ fieldOfFractionsSetoid b d) Setoid.__ fieldOfFractionsSetoid (fieldOfFractionsPlus a b) (fieldOfFractionsPlus c d)
plusWellDefined {a ,, (b , b!=0)} {c ,, (d , d!=0)} {e ,, (f , f!=0)} {g ,, (h , h!=0)} af=be ch=dg = need
where
open Setoid S
open Ring R
open Equivalence eq
have1 : (c * h) (d * g)
have1 = ch=dg
have2 : (a * f) (b * e)
have2 = af=be
need : (((a * d) + (b * c)) * (f * h)) ((b * d) * (((e * h) + (f * g))))
need = transitive (transitive (Ring.*Commutative R) (transitive (Ring.*DistributesOver+ R) (Group.+WellDefined (Ring.additiveGroup R) (transitive *Associative (transitive (*WellDefined (*Commutative) reflexive) (transitive (*WellDefined *Associative reflexive) (transitive (*WellDefined (*WellDefined have2 reflexive) reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined (transitive (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative)) *Associative) reflexive) (symmetric *Associative))))))))) (transitive *Commutative (transitive (transitive (symmetric *Associative) (*WellDefined reflexive (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined have1 reflexive) (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative))))))) *Associative))))) (symmetric (Ring.*DistributesOver+ R))

View File

@@ -0,0 +1,41 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Definition
open import Groups.Lemmas
open import Rings.Definition
open import Rings.Lemmas
open import Rings.IntegralDomains
open import Fields.Fields
open import Functions
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.FieldOfFractions.Field {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
open import Fields.FieldOfFractions.Setoid I
open import Fields.FieldOfFractions.Addition I
open import Fields.FieldOfFractions.Multiplication I
open import Fields.FieldOfFractions.Ring I
fieldOfFractions : Field fieldOfFractionsRing
Field.allInvertible fieldOfFractions (fst ,, (b , _)) prA = (b ,, (fst , ans)) , need
where
open Setoid S
open Equivalence eq
need : ((b * fst) * Ring.1R R) ((fst * b) * Ring.1R R)
need = Ring.*WellDefined R (Ring.*Commutative R) reflexive
ans : fst Ring.0R R False
ans pr = prA need'
where
need' : (fst * Ring.1R R) (b * Ring.0R R)
need' = transitive (Ring.*WellDefined R pr reflexive) (transitive (transitive (Ring.*Commutative R) (Ring.timesZero R)) (symmetric (Ring.timesZero R)))
Field.nontrivial fieldOfFractions pr = IntegralDomain.nontrivial I (symmetric (transitive (symmetric (Ring.timesZero R)) (transitive (Ring.*Commutative R) (transitive pr (Ring.identIsIdent R)))))
where
open Setoid S
open Equivalence eq
pr' : (Ring.0R R) * (Ring.1R R) (Ring.1R R) * (Ring.1R R)
pr' = pr

View File

@@ -0,0 +1,65 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Definition
open import Groups.Lemmas
open import Rings.Definition
open import Rings.Lemmas
open import Rings.IntegralDomains
open import Fields.Fields
open import Functions
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.FieldOfFractions.Group {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
open import Fields.FieldOfFractions.Setoid I
open import Fields.FieldOfFractions.Addition I
fieldOfFractionsGroup : Group fieldOfFractionsSetoid fieldOfFractionsPlus
Group.+WellDefined fieldOfFractionsGroup {a ,, (b , b!=0)} {c ,, (d , d!=0)} {e ,, (f , f!=0)} {g ,, (h , h!=0)} af=be ch=dg = need
where
open Setoid S
open Ring R
open Equivalence eq
have1 : (c * h) (d * g)
have1 = ch=dg
have2 : (a * f) (b * e)
have2 = af=be
need : (((a * d) + (b * c)) * (f * h)) ((b * d) * (((e * h) + (f * g))))
need = transitive (transitive (Ring.*Commutative R) (transitive (Ring.*DistributesOver+ R) (Group.+WellDefined (Ring.additiveGroup R) (transitive *Associative (transitive (*WellDefined (*Commutative) reflexive) (transitive (*WellDefined *Associative reflexive) (transitive (*WellDefined (*WellDefined have2 reflexive) reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined (transitive (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative)) *Associative) reflexive) (symmetric *Associative))))))))) (transitive *Commutative (transitive (transitive (symmetric *Associative) (*WellDefined reflexive (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined have1 reflexive) (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative))))))) *Associative))))) (symmetric (Ring.*DistributesOver+ R))
Group.0G fieldOfFractionsGroup = Ring.0R R ,, (Ring.1R R , IntegralDomain.nontrivial I)
Group.inverse fieldOfFractionsGroup (a ,, b) = Group.inverse (Ring.additiveGroup R) a ,, b
Group.+Associative fieldOfFractionsGroup {a ,, (b , b!=0)} {c ,, (d , d!=0)} {e ,, (f , f!=0)} = need
where
open Setoid S
open Equivalence eq
need : (((a * (d * f)) + (b * ((c * f) + (d * e)))) * ((b * d) * f)) ((b * (d * f)) * ((((a * d) + (b * c)) * f) + ((b * d) * e)))
need = transitive (Ring.*Commutative R) (Ring.*WellDefined R (symmetric (Ring.*Associative R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) reflexive (Ring.*DistributesOver+ R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) reflexive (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Associative R) (Ring.*Associative R))) (transitive (Group.+Associative (Ring.additiveGroup R)) (Group.+WellDefined (Ring.additiveGroup R) (transitive (transitive (Group.+WellDefined (Ring.additiveGroup R) (transitive (Ring.*Associative R) (Ring.*Commutative R)) (Ring.*Commutative R)) (symmetric (Ring.*DistributesOver+ R))) (Ring.*Commutative R)) reflexive)))))
Group.identRight fieldOfFractionsGroup {a ,, (b , b!=0)} = need
where
open Setoid S
open Equivalence eq
need : (((a * Ring.1R R) + (b * Group.0G (Ring.additiveGroup R))) * b) ((b * Ring.1R R) * a)
need = transitive (transitive (Ring.*WellDefined R (transitive (Group.+WellDefined (Ring.additiveGroup R) (transitive (Ring.*Commutative R) (Ring.identIsIdent R)) reflexive) (transitive (Group.+WellDefined (Ring.additiveGroup R) reflexive (Ring.timesZero R)) (Group.identRight (Ring.additiveGroup R)))) reflexive) (Ring.*Commutative R)) (symmetric (Ring.*WellDefined R (transitive (Ring.*Commutative R) (Ring.identIsIdent R)) reflexive))
Group.identLeft fieldOfFractionsGroup {a ,, (b , _)} = need
where
open Setoid S
open Equivalence eq
need : (((Group.0G (Ring.additiveGroup R) * b) + (Ring.1R R * a)) * b) ((Ring.1R R * b) * a)
need = transitive (transitive (Ring.*WellDefined R (transitive (Group.+WellDefined (Ring.additiveGroup R) reflexive (Ring.identIsIdent R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) (transitive (Ring.*Commutative R) (Ring.timesZero R)) reflexive) (Group.identLeft (Ring.additiveGroup R)))) reflexive) (Ring.*Commutative R)) (Ring.*WellDefined R (symmetric (Ring.identIsIdent R)) reflexive)
Group.invLeft fieldOfFractionsGroup {a ,, (b , _)} = need
where
open Setoid S
open Equivalence eq
need : (((Group.inverse (Ring.additiveGroup R) a * b) + (b * a)) * Ring.1R R) ((b * b) * Group.0G (Ring.additiveGroup R))
need = transitive (transitive (transitive (Ring.*Commutative R) (Ring.identIsIdent R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Commutative R) reflexive) (transitive (symmetric (Ring.*DistributesOver+ R)) (transitive (Ring.*WellDefined R reflexive (Group.invLeft (Ring.additiveGroup R))) (Ring.timesZero R))))) (symmetric (Ring.timesZero R))
Group.invRight fieldOfFractionsGroup {a ,, (b , _)} = need
where
open Setoid S
open Equivalence eq
need : (((a * b) + (b * Group.inverse (Ring.additiveGroup R) a)) * Ring.1R R) ((b * b) * Group.0G (Ring.additiveGroup R))
need = transitive (transitive (transitive (Ring.*Commutative R) (Ring.identIsIdent R)) (transitive (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Commutative R) reflexive) (transitive (symmetric (Ring.*DistributesOver+ R)) (transitive (Ring.*WellDefined R reflexive (Group.invRight (Ring.additiveGroup R))) (Ring.timesZero R))))) (symmetric (Ring.timesZero R))

View File

@@ -0,0 +1,49 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Definition
open import Groups.Lemmas
open import Rings.Definition
open import Rings.Lemmas
open import Rings.IntegralDomains
open import Fields.Fields
open import Functions
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.FieldOfFractions.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
open import Fields.FieldOfFractions.Setoid I
open import Fields.FieldOfFractions.Addition I
open import Fields.FieldOfFractions.Multiplication I
open import Fields.FieldOfFractions.Ring I
open import Fields.FieldOfFractions.Field I
embedIntoFieldOfFractions : A fieldOfFractionsSet
embedIntoFieldOfFractions a = a ,, (Ring.1R R , IntegralDomain.nontrivial I)
homIntoFieldOfFractions : RingHom R fieldOfFractionsRing embedIntoFieldOfFractions
RingHom.preserves1 homIntoFieldOfFractions = Equivalence.reflexive (Setoid.eq S)
RingHom.ringHom homIntoFieldOfFractions {a} {b} = Equivalence.transitive (Setoid.eq S) (Ring.*WellDefined R (Equivalence.reflexive (Setoid.eq S)) (Ring.identIsIdent R)) (Ring.*Commutative R)
GroupHom.groupHom (RingHom.groupHom homIntoFieldOfFractions) {x} {y} = need
where
open Setoid S
open Equivalence eq
need : ((x + y) * (Ring.1R R * Ring.1R R)) (Ring.1R R * ((x * Ring.1R R) + (Ring.1R R * y)))
need = transitive (transitive (Ring.*WellDefined R reflexive (Ring.identIsIdent R)) (transitive (Ring.*Commutative R) (transitive (Ring.identIsIdent R) (Group.+WellDefined (Ring.additiveGroup R) (symmetric (transitive (Ring.*Commutative R) (Ring.identIsIdent R))) (symmetric (Ring.identIsIdent R)))))) (symmetric (Ring.identIsIdent R))
GroupHom.wellDefined (RingHom.groupHom homIntoFieldOfFractions) x=y = transitive (Ring.*Commutative R) (Ring.*WellDefined R reflexive x=y)
where
open Equivalence (Setoid.eq S)
homIntoFieldOfFractionsIsInj : SetoidInjection S fieldOfFractionsSetoid embedIntoFieldOfFractions
SetoidInjection.wellDefined homIntoFieldOfFractionsIsInj x=y = transitive (Ring.*Commutative R) (Ring.*WellDefined R reflexive x=y)
where
open Equivalence (Setoid.eq S)
SetoidInjection.injective homIntoFieldOfFractionsIsInj x~y = transitive (symmetric identIsIdent) (transitive *Commutative (transitive x~y identIsIdent))
where
open Ring R
open Setoid S
open Equivalence eq

View File

@@ -0,0 +1,37 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Definition
open import Groups.Lemmas
open import Rings.Definition
open import Rings.Lemmas
open import Rings.IntegralDomains
open import Fields.Fields
open import Functions
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.FieldOfFractions.Multiplication {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
open import Fields.FieldOfFractions.Setoid I
fieldOfFractionsTimes : fieldOfFractionsSet fieldOfFractionsSet fieldOfFractionsSet
fieldOfFractionsTimes (a ,, (b , b!=0)) (c ,, (d , d!=0)) = (a * c) ,, ((b * d) , ans)
where
open Setoid S
open Ring R
ans : ((b * d) Ring.0R R) False
ans pr with IntegralDomain.intDom I pr
ans pr | inl x = b!=0 x
ans pr | inr x = d!=0 x
fieldOfFractionsTimesWellDefined : {a b c d : fieldOfFractionsSet} (Setoid.__ fieldOfFractionsSetoid a c) (Setoid.__ fieldOfFractionsSetoid b d) (Setoid.__ fieldOfFractionsSetoid (fieldOfFractionsTimes a b) (fieldOfFractionsTimes c d))
fieldOfFractionsTimesWellDefined {a ,, (b , _)} {c ,, (d , _)} {e ,, (f , _)} {g ,, (h , _)} af=be ch=dg = need
where
open Setoid S
open Equivalence eq
need : ((a * c) * (f * h)) ((b * d) * (e * g))
need = transitive (Ring.*WellDefined R reflexive (Ring.*Commutative R)) (transitive (Ring.*Associative R) (transitive (Ring.*WellDefined R (symmetric (Ring.*Associative R)) reflexive) (transitive (Ring.*WellDefined R (Ring.*WellDefined R reflexive ch=dg) reflexive) (transitive (Ring.*Commutative R) (transitive (Ring.*Associative R) (transitive (Ring.*WellDefined R (Ring.*Commutative R) reflexive) (transitive (Ring.*WellDefined R af=be reflexive) (transitive (Ring.*Associative R) (transitive (Ring.*WellDefined R (transitive (symmetric (Ring.*Associative R)) (transitive (Ring.*WellDefined R reflexive (Ring.*Commutative R)) (Ring.*Associative R))) reflexive) (symmetric (Ring.*Associative R)))))))))))

View File

@@ -14,18 +14,20 @@ open import Fields.Fields
open import Functions
open import Setoids.Setoids
open import Setoids.Orders
open import Fields.FieldOfFractions
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {c} A} {pOrder : SetoidPartialOrder S _<_} {pRing : PartiallyOrderedRing R pOrder} (I : IntegralDomain R) (order : TotallyOrderedRing pRing) where
module Fields.FieldOfFractions.Order {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {c} A} {pOrder : SetoidPartialOrder S _<_} {pRing : PartiallyOrderedRing R pOrder} (I : IntegralDomain R) (order : TotallyOrderedRing pRing) where
open import Fields.FieldOfFractions.Setoid I
open import Fields.FieldOfFractions.Ring I
open SetoidTotalOrder (TotallyOrderedRing.total order)
open import Rings.Orders.Partial.Lemmas
open PartiallyOrderedRing pRing
fieldOfFractionsComparison : Rel (fieldOfFractionsSet I)
fieldOfFractionsComparison : Rel fieldOfFractionsSet
fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) with totality (Ring.0R R) denomA
fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) with totality (Ring.0R R) denomB
fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inl 0<denomB) = (numA * denomB) < (numB * denomA)
@@ -43,7 +45,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
where
open Equivalence (Setoid.eq S)
fieldOfFractionsOrderWellDefinedLeft : {x y z : fieldOfFractionsSet I} fieldOfFractionsComparison x y Setoid.__ (fieldOfFractionsSetoid I) x z fieldOfFractionsComparison z y
fieldOfFractionsOrderWellDefinedLeft : {x y z : fieldOfFractionsSet} fieldOfFractionsComparison x y Setoid.__ fieldOfFractionsSetoid x z fieldOfFractionsComparison z y
fieldOfFractionsOrderWellDefinedLeft {(numX ,, (denomX , denomX!=0))} {(numY ,, (denomY , denomY!=0))} {(numZ ,, (denomZ , denomZ!=0))} x<y x=z with totality (Ring.0R R) denomZ
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) with totality (Ring.0R R) denomY
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) with totality (Ring.0R R) denomX
@@ -153,7 +155,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
where
open Equivalence (Setoid.eq S)
fieldOfFractionsOrderWellDefinedRight : {x y z : fieldOfFractionsSet I} fieldOfFractionsComparison x y Setoid.__ (fieldOfFractionsSetoid I) y z fieldOfFractionsComparison x z
fieldOfFractionsOrderWellDefinedRight : {x y z : fieldOfFractionsSet} fieldOfFractionsComparison x y Setoid.__ (fieldOfFractionsSetoid) y z fieldOfFractionsComparison x z
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z with totality (Ring.0R R) denomX
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inl 0<denomX) with totality (Ring.0R R) denomZ
fieldOfFractionsOrderWellDefinedRight {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y y=z | inl (inl 0<denomX) | inl (inl 0<denomZ) with totality (Ring.0R R) denomY
@@ -208,7 +210,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
open Ring R
open Equivalence (Setoid.eq S)
fieldOfFractionsOrder : SetoidPartialOrder (fieldOfFractionsSetoid I) fieldOfFractionsComparison
fieldOfFractionsOrder : SetoidPartialOrder fieldOfFractionsSetoid fieldOfFractionsComparison
SetoidPartialOrder.<WellDefined (fieldOfFractionsOrder) {a} {b} {c} {d} a=b c=d a<c = fieldOfFractionsOrderWellDefinedRight {b} {c} {d} (fieldOfFractionsOrderWellDefinedLeft {a} {c} {b} a<c a=b) c=d
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr with totality (Ring.0R R) aDenom
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inl 0<aDenom) with totality (Ring.0R R) aDenom
@@ -407,7 +409,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
open Ring R
open Equivalence (Setoid.eq S)
fieldOfFractionsPOrderedRing : PartiallyOrderedRing (fieldOfFractionsRing I) (SetoidTotalOrder.partial fieldOfFractionsTotalOrder)
fieldOfFractionsPOrderedRing : PartiallyOrderedRing fieldOfFractionsRing (SetoidTotalOrder.partial fieldOfFractionsTotalOrder)
PartiallyOrderedRing.orderRespectsAddition fieldOfFractionsPOrderedRing {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) with totality (Ring.0R R) (denomA * denomC)
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) with totality (Ring.0R R) (denomB * denomC)
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) with totality (Ring.0R R) denomA

View File

@@ -0,0 +1,60 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Definition
open import Groups.Lemmas
open import Rings.Definition
open import Rings.Lemmas
open import Rings.IntegralDomains
open import Fields.Fields
open import Functions
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.FieldOfFractions.Ring {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
open import Fields.FieldOfFractions.Setoid I
open import Fields.FieldOfFractions.Addition I
open import Fields.FieldOfFractions.Group I
open import Fields.FieldOfFractions.Multiplication I
fieldOfFractionsRing : Ring fieldOfFractionsSetoid fieldOfFractionsPlus fieldOfFractionsTimes
Ring.additiveGroup fieldOfFractionsRing = fieldOfFractionsGroup
Ring.*WellDefined fieldOfFractionsRing {a} {b} {c} {d} = fieldOfFractionsTimesWellDefined {a} {b} {c} {d}
Ring.1R fieldOfFractionsRing = Ring.1R R ,, (Ring.1R R , IntegralDomain.nontrivial I)
Ring.groupIsAbelian fieldOfFractionsRing {a ,, (b , _)} {c ,, (d , _)} = need
where
open Setoid S
open Equivalence eq
need : (((a * d) + (b * c)) * (d * b)) ((b * d) * ((c * b) + (d * a)))
need = transitive (Ring.*Commutative R) (Ring.*WellDefined R (Ring.*Commutative R) (transitive (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Commutative R) (Ring.*Commutative R)) (Ring.groupIsAbelian R)))
Ring.*Associative fieldOfFractionsRing {a ,, (b , _)} {c ,, (d , _)} {e ,, (f , _)} = need
where
open Setoid S
open Equivalence eq
need : ((a * (c * e)) * ((b * d) * f)) ((b * (d * f)) * ((a * c) * e))
need = transitive (Ring.*WellDefined R (Ring.*Associative R) (symmetric (Ring.*Associative R))) (Ring.*Commutative R)
Ring.*Commutative fieldOfFractionsRing {a ,, (b , _)} {c ,, (d , _)} = need
where
open Setoid S
open Equivalence eq
need : ((a * c) * (d * b)) ((b * d) * (c * a))
need = transitive (Ring.*Commutative R) (Ring.*WellDefined R (Ring.*Commutative R) (Ring.*Commutative R))
Ring.*DistributesOver+ fieldOfFractionsRing {a ,, (b , _)} {c ,, (d , _)} {e ,, (f , _)} = need
where
open Setoid S
open Ring R
open Equivalence eq
inter : b * (a * ((c * f) + (d * e))) (((a * c) * (b * f)) + ((b * d) * (a * e)))
inter = transitive *Associative (transitive *DistributesOver+ (Group.+WellDefined additiveGroup (transitive *Associative (transitive (*WellDefined (transitive (*WellDefined (*Commutative) reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative))) reflexive) (symmetric *Associative))) (transitive *Associative (transitive (*WellDefined (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) reflexive) (symmetric *Associative)))))
need : ((a * ((c * f) + (d * e))) * ((b * d) * (b * f))) ((b * (d * f)) * (((a * c) * (b * f)) + ((b * d) * (a * e))))
need = transitive (Ring.*WellDefined R reflexive (Ring.*WellDefined R reflexive (Ring.*Commutative R))) (transitive (Ring.*WellDefined R reflexive (Ring.*Associative R)) (transitive (Ring.*Commutative R) (transitive (Ring.*WellDefined R (Ring.*WellDefined R (symmetric (Ring.*Associative R)) reflexive) reflexive) (transitive (symmetric (Ring.*Associative R)) (Ring.*WellDefined R reflexive inter)))))
Ring.identIsIdent fieldOfFractionsRing {a ,, (b , _)} = need
where
open Setoid S
open Equivalence eq
need : (((Ring.1R R) * a) * b) (((Ring.1R R * b)) * a)
need = transitive (Ring.*WellDefined R (Ring.identIsIdent R) reflexive) (transitive (Ring.*Commutative R) (Ring.*WellDefined R (symmetric (Ring.identIsIdent R)) reflexive))

View File

@@ -0,0 +1,44 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Definition
open import Groups.Lemmas
open import Rings.Definition
open import Rings.Lemmas
open import Rings.IntegralDomains
open import Fields.Fields
open import Functions
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.FieldOfFractions.Setoid {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
fieldOfFractionsSet : Set (a b)
fieldOfFractionsSet = (A && (Sg A (λ a (Setoid.__ S a (Ring.0R R) False))))
fieldOfFractionsSetoid : Setoid fieldOfFractionsSet
Setoid.__ fieldOfFractionsSetoid (a ,, (b , b!=0)) (c ,, (d , d!=0)) = Setoid.__ S (a * d) (b * c)
Equivalence.reflexive (Setoid.eq fieldOfFractionsSetoid) {a ,, (b , b!=0)} = Ring.*Commutative R
Equivalence.symmetric (Setoid.eq fieldOfFractionsSetoid) {a ,, (b , b!=0)} {c ,, (d , d!=0)} ad=bc = transitive (Ring.*Commutative R) (transitive (symmetric ad=bc) (Ring.*Commutative R))
where
open Equivalence (Setoid.eq S)
Equivalence.transitive (Setoid.eq fieldOfFractionsSetoid) {a ,, (b , b!=0)} {c ,, (d , d!=0)} {e ,, (f , f!=0)} ad=bc cf=de = p5
where
open Setoid S
open Ring R
open Equivalence eq
p : (a * d) * f (b * c) * f
p = Ring.*WellDefined R ad=bc reflexive
p2 : (a * f) * d b * (d * e)
p2 = transitive (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive p (transitive (symmetric *Associative) (*WellDefined reflexive cf=de)))
p3 : (a * f) * d (b * e) * d
p3 = transitive p2 (transitive (*WellDefined reflexive *Commutative) *Associative)
p4 : (d 0R) || ((a * f) (b * e))
p4 = cancelIntDom I (transitive *Commutative (transitive p3 *Commutative))
p5 : (a * f) (b * e)
p5 with p4
p5 | inl d=0 = exFalso (d!=0 d=0)
p5 | inr x = x