mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-17 17:38:38 +00:00
Z is a Euclidean domain (#86)
This commit is contained in:
24
Rings/Units/Definition.agda
Normal file
24
Rings/Units/Definition.agda
Normal file
@@ -0,0 +1,24 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Groups.Groups
|
||||
open import Groups.Homomorphisms.Definition
|
||||
open import Groups.Definition
|
||||
open import Numbers.Naturals.Naturals
|
||||
open import Setoids.Orders
|
||||
open import Setoids.Setoids
|
||||
open import Functions
|
||||
open import Sets.EquivalenceRelations
|
||||
open import Rings.Definition
|
||||
open import Rings.Homomorphisms.Definition
|
||||
open import Groups.Homomorphisms.Lemmas
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Rings.Units.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where
|
||||
|
||||
open Setoid S
|
||||
open Ring R
|
||||
|
||||
Unit : A → Set (a ⊔ b)
|
||||
Unit r = Sg A (λ s → (r * s) ∼ 1R)
|
Reference in New Issue
Block a user