mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-21 11:08:39 +00:00
Z is a Euclidean domain (#86)
This commit is contained in:
30
Rings/Primes/Definition.agda
Normal file
30
Rings/Primes/Definition.agda
Normal file
@@ -0,0 +1,30 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Groups.Groups
|
||||
open import Groups.Homomorphisms.Definition
|
||||
open import Groups.Definition
|
||||
open import Numbers.Naturals.Naturals
|
||||
open import Setoids.Orders
|
||||
open import Setoids.Setoids
|
||||
open import Functions
|
||||
open import Sets.EquivalenceRelations
|
||||
open import Rings.Definition
|
||||
open import Rings.Homomorphisms.Definition
|
||||
open import Groups.Homomorphisms.Lemmas
|
||||
open import Rings.IntegralDomains.Definition
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Rings.Primes.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where
|
||||
|
||||
open import Rings.Divisible.Definition R
|
||||
open Ring R
|
||||
open Setoid S
|
||||
open import Rings.Units.Definition R
|
||||
|
||||
record Prime (x : A) : Set (a ⊔ b) where
|
||||
field
|
||||
isPrime : (r s : A) → (x ∣ (r * s)) → ((x ∣ r) → False) → (x ∣ s)
|
||||
nonzero : (x ∼ 0R) → False
|
||||
nonunit : Unit x → False
|
Reference in New Issue
Block a user