mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-18 17:48:40 +00:00
Z is a Euclidean domain (#86)
This commit is contained in:
@@ -17,12 +17,3 @@ open import Fields.Fields
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Rings.IntegralDomains.Examples where
|
||||
|
||||
fieldIsIntDom : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (F : Field R) → (Setoid._∼_ S (Ring.1R R) (Ring.0R R) → False) → IntegralDomain R
|
||||
IntegralDomain.intDom (fieldIsIntDom F 1!=0) {a} {b} ab=0 a!=0 with Field.allInvertible F a a!=0
|
||||
IntegralDomain.intDom (fieldIsIntDom {S = S} {R = R} F _) {a} {b} ab=0 a!=0 | 1/a , prA = transitive (symmetric identIsIdent) (transitive (*WellDefined (symmetric prA) reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive ab=0) timesZero)))
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
open Ring R
|
||||
IntegralDomain.nontrivial (fieldIsIntDom F 1!=0) = 1!=0
|
||||
|
Reference in New Issue
Block a user