mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-18 09:48:38 +00:00
Z is a Euclidean domain (#86)
This commit is contained in:
@@ -16,9 +16,13 @@ open import Rings.Lemmas
|
||||
open import Sets.EquivalenceRelations
|
||||
open import Rings.Ideals.Definition
|
||||
open import Fields.Fields
|
||||
open import Fields.Lemmas
|
||||
open import Rings.Cosets
|
||||
open import Rings.Ideals.Maximal.Definition
|
||||
open import Rings.Ideals.Lemmas
|
||||
open import Rings.Ideals.Prime.Definition
|
||||
open import Rings.IntegralDomains.Definition
|
||||
open import Rings.Ideals.Prime.Lemmas
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
@@ -77,3 +81,11 @@ MaximalIdeal.isMaximal (quotientFieldImpliesIdealMaximal f) {bigger} biggerIdeal
|
||||
u = Ideal.closedUnderInverse biggerIdeal (Ideal.isSubset biggerIdeal *Commutative (Ideal.accumulatesTimes biggerIdeal biggerA))
|
||||
v : bigger 1R
|
||||
v = Ideal.isSubset biggerIdeal (invTwice additiveGroup 1R) (Ideal.closedUnderInverse biggerIdeal (Ideal.isSubset biggerIdeal (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invRight) identRight)) (Ideal.closedUnderPlus biggerIdeal t u)))
|
||||
|
||||
idealMaximalImpliesIdealPrime : ({d : _} → MaximalIdeal i {d}) → PrimeIdeal i
|
||||
idealMaximalImpliesIdealPrime max = quotientIntDomImpliesIdealPrime i f'
|
||||
where
|
||||
f : Field (cosetRing R i)
|
||||
f = idealMaximalImpliesQuotientField max
|
||||
f' : IntegralDomain (cosetRing R i)
|
||||
f' = fieldIsIntDom f (λ p → Field.nontrivial f (Equivalence.symmetric (Setoid.eq (cosetSetoid additiveGroup (Ideal.isSubgroup i))) p))
|
||||
|
Reference in New Issue
Block a user