mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-16 08:58:39 +00:00
Z is a Euclidean domain (#86)
This commit is contained in:
@@ -25,6 +25,7 @@ open Equivalence eq
|
||||
open Group additiveGroup
|
||||
|
||||
open import Rings.Lemmas R
|
||||
open import Rings.Divisible.Definition R
|
||||
|
||||
record Ideal {c : _} (pred : A → Set c) : Set (a ⊔ b ⊔ c) where
|
||||
field
|
||||
@@ -37,7 +38,7 @@ record Ideal {c : _} (pred : A → Set c) : Set (a ⊔ b ⊔ c) where
|
||||
predicate = pred
|
||||
|
||||
generatedIdealPred : A → A → Set (a ⊔ b)
|
||||
generatedIdealPred a b = Sg A (λ c → Setoid._∼_ S (a * c) b)
|
||||
generatedIdealPred a b = a ∣ b
|
||||
|
||||
generatedIdeal : (a : A) → Ideal (generatedIdealPred a)
|
||||
Subgroup.isSubset (Ideal.isSubgroup (generatedIdeal a)) {x} {y} x=y (c , prC) = c , transitive prC x=y
|
||||
|
Reference in New Issue
Block a user