mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-12 23:28:39 +00:00
Z is a Euclidean domain (#86)
This commit is contained in:
@@ -22,7 +22,7 @@ module Rings.EuclideanDomains.Definition {a b : _} {A : Set a} {S : Setoid {a} {
|
||||
open Setoid S
|
||||
open Ring R
|
||||
|
||||
record DivisionAlgorithmResult {norm : {a : A} → ((a ∼ 0R) → False) → ℕ} {x y : A} (x!=0 : (x ∼ 0R) → False) (y!=0 : (y ∼ 0R) → False) : Set (a ⊔ b) where
|
||||
record DivisionAlgorithmResult (norm : {a : A} → ((a ∼ 0R) → False) → ℕ) {x y : A} (x!=0 : (x ∼ 0R) → False) (y!=0 : (y ∼ 0R) → False) : Set (a ⊔ b) where
|
||||
field
|
||||
quotient : A
|
||||
rem : A
|
||||
@@ -34,4 +34,4 @@ record EuclideanDomain : Set (a ⊔ lsuc b) where
|
||||
isIntegralDomain : IntegralDomain R
|
||||
norm : {a : A} → ((a ∼ 0R) → False) → ℕ
|
||||
normSize : {a b : A} → (a!=0 : (a ∼ 0R) → False) → (b!=0 : (b ∼ 0R) → False) → (c : A) → b ∼ (a * c) → (norm a!=0) ≤N (norm b!=0)
|
||||
divisionAlg : {a b : A} → (a!=0 : (a ∼ 0R) → False) → (b!=0 : (b ∼ 0R) → False) → DivisionAlgorithmResult {norm} a!=0 b!=0
|
||||
divisionAlg : {a b : A} → (a!=0 : (a ∼ 0R) → False) → (b!=0 : (b ∼ 0R) → False) → DivisionAlgorithmResult norm a!=0 b!=0
|
||||
|
Reference in New Issue
Block a user