mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-21 19:18:40 +00:00
Z is a Euclidean domain (#86)
This commit is contained in:
35
Groups/Subgroups/Normal/Examples.agda
Normal file
35
Groups/Subgroups/Normal/Examples.agda
Normal file
@@ -0,0 +1,35 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import Groups.Groups
|
||||
open import Groups.Definition
|
||||
open import Orders
|
||||
open import Numbers.Integers.Integers
|
||||
open import Setoids.Setoids
|
||||
open import LogicalFormulae
|
||||
open import Sets.FinSet
|
||||
open import Functions
|
||||
open import Sets.EquivalenceRelations
|
||||
open import Numbers.Naturals.Naturals
|
||||
open import Groups.Homomorphisms.Definition
|
||||
open import Groups.Homomorphisms.Lemmas
|
||||
open import Groups.Isomorphisms.Definition
|
||||
open import Groups.Subgroups.Definition
|
||||
open import Groups.Lemmas
|
||||
open import Groups.Abelian.Definition
|
||||
open import Groups.QuotientGroup.Definition
|
||||
open import Groups.Subgroups.Normal.Definition
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Groups.Subgroups.Normal.Examples {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} (G : Group S _+_) where
|
||||
|
||||
open import Groups.Subgroups.Examples G
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
open Group G
|
||||
|
||||
trivialSubgroupIsNormal : normalSubgroup G trivialSubgroup
|
||||
trivialSubgroupIsNormal {g} k=0 = transitive (+WellDefined reflexive (transitive (+WellDefined k=0 reflexive) identLeft)) (invRight {g})
|
||||
|
||||
improperSubgroupIsNormal : normalSubgroup G improperSubgroup
|
||||
improperSubgroupIsNormal _ = record {}
|
Reference in New Issue
Block a user