mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-16 17:08:39 +00:00
Z is a Euclidean domain (#86)
This commit is contained in:
@@ -42,30 +42,3 @@ fourWay+Associative'' {S = S} {_·_ = _·_} G = transitive +Associative (symmetr
|
||||
open Group G
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
|
||||
{-
|
||||
quotientHom : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} → {f : A → B} → (fHom : GroupHom G H f) → A → A
|
||||
quotientHom {S = S} {T = T} {_·A_ = _·A_} {_·B_ = _·B_} G {f = f} fHom a = {!!}
|
||||
|
||||
quotientInjection : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} → {f : A → B} → (fHom : GroupHom G H f) → GroupHom (quotientGroup G fHom) G (quotientHom G fHom)
|
||||
GroupHom.groupHom (quotientInjection {S = S} {T = T} {_·A_ = _·A_} {_·B_ = _·B_} G {f = f} fHom) {x} {y} = {!!}
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
open Reflexive reflexiveEq
|
||||
GroupHom.wellDefined (quotientInjection {S = S} {T = T} {_·A_ = _·A_} G {H = H} {f = f} fHom) {x} {y} x~y = {!!}
|
||||
where
|
||||
open Group G
|
||||
open Setoid S
|
||||
open Setoid T renaming (_∼_ to _∼T_)
|
||||
open Equivalence (Setoid.eq S)
|
||||
open Reflexive reflexiveEq
|
||||
have : f (x ·A inverse y) ∼T Group.0G H
|
||||
have = x~y
|
||||
need : x ∼ y
|
||||
need = {!!}
|
||||
|
||||
quotientIsSubgroup : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} {G : Group S _·A_} {H : Group T _·B_} → {f : A → B} → {fHom : GroupHom G H f} → Subgroup G (quotientGroup G fHom) (quotientInjection G fHom)
|
||||
quotientIsSubgroup = {!!}
|
||||
|
||||
-}
|
||||
|
Reference in New Issue
Block a user