mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-16 08:58:39 +00:00
Z is a Euclidean domain (#86)
This commit is contained in:
@@ -11,12 +11,12 @@ open import Functions
|
||||
open import Setoids.Setoids
|
||||
open import Sets.EquivalenceRelations
|
||||
open import Rings.IntegralDomains.Definition
|
||||
open import Rings.IntegralDomains.Lemmas
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Fields.FieldOfFractions.Setoid {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
|
||||
|
||||
|
||||
fieldOfFractionsSet : Set (a ⊔ b)
|
||||
fieldOfFractionsSet = (A && (Sg A (λ a → (Setoid._∼_ S a (Ring.0R R) → False))))
|
||||
|
||||
@@ -38,6 +38,6 @@ Equivalence.transitive (Setoid.eq fieldOfFractionsSetoid) {a ,, (b , b!=0)} {c ,
|
||||
p3 : (a * f) * d ∼ (b * e) * d
|
||||
p3 = transitive p2 (transitive (*WellDefined reflexive *Commutative) *Associative)
|
||||
p4 : ((d ∼ 0R) → False) → ((a * f) ∼ (b * e))
|
||||
p4 = cancelIntDom R I (transitive *Commutative (transitive p3 *Commutative))
|
||||
p4 = cancelIntDom I (transitive *Commutative (transitive p3 *Commutative))
|
||||
p5 : (a * f) ∼ (b * e)
|
||||
p5 = p4 d!=0
|
||||
|
Reference in New Issue
Block a user