@@ -90,10 +90,10 @@ abstract
triangleInequality a b | inl ( inr a+b<0) | inl ( inr a<0) with totality 0 G b
triangleInequality a b | inl ( inr a+b<0) | inl ( inr a<0) | inl ( inl 0 <b) = inl ( <WellDefined ( Equivalence.symmetric eq ( invContravariant additiveGroup) ) groupIsAbelian ( orderRespectsAddition ( SetoidPartialOrder.<Transitive pOrder ( lemm2' _ 0 <b) 0 <b) ( inverse a) ) )
triangleInequality a b | inl ( inr a+b<0) | inl ( inr a<0) | inl ( inr b<0) = inr ( Equivalence.transitive eq ( invContravariant additiveGroup) groupIsAbelian)
triangleInequality a b | inl ( inr a+b<0) | inl ( inr a<0) | inr 0 = b = inr ( Equivalence.transitive eq ( invContravariant additiveGroup) ( Equivalence.transitive eq ( Equivalence.transitive eq ( Equivalence.transitive eq ( +WellDefined ( Equivalence.transitive eq ( inverseWellDefined additiveGroup ( Equivalence.symmetric eq 0 = b) ) ( invIdentity additiveGroup) ) ( Equivalence.reflexive eq) ) identLeft) ( Equivalence.symmetric eq identRight) ) ( +WellDefined ( Equivalence.reflexive eq) 0 = b) ) )
triangleInequality a b | inl ( inr a+b<0) | inl ( inr a<0) | inr 0 = b = inr ( Equivalence.transitive eq ( invContravariant additiveGroup) ( Equivalence.transitive eq ( Equivalence.transitive eq ( Equivalence.transitive eq ( +WellDefined ( Equivalence.transitive eq ( inverseWellDefined additiveGroup ( Equivalence.symmetric eq 0 = b) ) ( invIdent additiveGroup) ) ( Equivalence.reflexive eq) ) identLeft) ( Equivalence.symmetric eq identRight) ) ( +WellDefined ( Equivalence.reflexive eq) 0 = b) ) )
triangleInequality a b | inl ( inr a+b<0) | inr 0 = a with totality 0 G b
triangleInequality a b | inl ( inr a+b<0) | inr 0 = a | inl ( inl 0 <b) = exFalso ( irreflexive { 0 G} ( SetoidPartialOrder.<Transitive pOrder 0 <b ( <WellDefined ( Equivalence.transitive eq ( +WellDefined ( Equivalence.symmetric eq 0 = a) ( Equivalence.reflexive eq) ) identLeft) ( Equivalence.reflexive eq) a+b<0) ) )
triangleInequality a b | inl ( inr a+b<0) | inr 0 = a | inl ( inr b<0) = inr ( Equivalence.transitive eq ( invContravariant additiveGroup) ( Equivalence.transitive eq groupIsAbelian ( +WellDefined ( Equivalence.transitive eq ( Equivalence.transitive eq ( Equivalence.symmetric eq ( inverseWellDefined additiveGroup 0 = a) ) ( invIdentity additiveGroup) ) 0 = a) ( Equivalence.reflexive eq) ) ) )
triangleInequality a b | inl ( inr a+b<0) | inr 0 = a | inl ( inr b<0) = inr ( Equivalence.transitive eq ( invContravariant additiveGroup) ( Equivalence.transitive eq groupIsAbelian ( +WellDefined ( Equivalence.transitive eq ( Equivalence.transitive eq ( Equivalence.symmetric eq ( inverseWellDefined additiveGroup 0 = a) ) ( invIdent additiveGroup) ) 0 = a) ( Equivalence.reflexive eq) ) ) )
triangleInequality a b | inl ( inr a+b<0) | inr 0 = a | inr 0 = b = exFalso ( irreflexive { 0 G} ( <WellDefined ( Equivalence.transitive eq ( +WellDefined ( Equivalence.symmetric eq 0 = a) ( Equivalence.symmetric eq 0 = b) ) identLeft) ( Equivalence.reflexive eq) a+b<0) )
triangleInequality a b | inr 0 = a+b with totality 0 G a
triangleInequality a b | inr 0 = a+b | inl ( inl 0 <a) with totality 0 G b
@@ -169,7 +169,7 @@ abstract
f : inverse 0 G ∼ inverse ( y + inverse x)
f = inverseWellDefined additiveGroup 0 = y-x
g : 0 G ∼ ( inverse y) + x
g = Equivalence.transitive eq ( symmetric ( invIdentity additiveGroup) ) ( Equivalence.transitive eq f ( Equivalence.transitive eq ( Equivalence.transitive eq ( invContravariant additiveGroup) groupIsAbelian) ( +WellDefined reflexive ( invInv additiveGroup) ) ) )
g = Equivalence.transitive eq ( symmetric ( invIdent additiveGroup) ) ( Equivalence.transitive eq f ( Equivalence.transitive eq ( Equivalence.transitive eq ( invContravariant additiveGroup) groupIsAbelian) ( +WellDefined reflexive ( invInv additiveGroup) ) ) )
x=y : x ∼ y
x=y = transferToRight additiveGroup ( symmetric ( Equivalence.transitive eq g groupIsAbelian) )
q'' : ( 0 R + x) < ( ( y + Group.inverse additiveGroup x) + x)