Tidy up groups (#64)

This commit is contained in:
Patrick Stevens
2019-11-03 17:12:48 +00:00
committed by GitHub
parent e4daab7153
commit d95f510cdd
42 changed files with 1438 additions and 1038 deletions

View File

@@ -0,0 +1,87 @@
{-# OPTIONS --safe --warning=error #-}
open import LogicalFormulae
open import Numbers.Naturals.Naturals
open import Numbers.Integers.Integers
open import Groups.Groups
open import Groups.Definition
open import Groups.Lemmas
open import Rings.Definition
open import Rings.Orders.Total.Definition
open import Rings.Orders.Partial.Definition
open import Fields.Fields
open import Numbers.Primes.PrimeNumbers
open import Setoids.Setoids
open import Setoids.Orders
open import Functions
open import Sets.EquivalenceRelations
module Numbers.Rationals.Definition where
open import Fields.FieldOfFractions.Setoid IntDom
open import Fields.FieldOfFractions.Addition IntDom
open import Fields.FieldOfFractions.Multiplication IntDom
open import Fields.FieldOfFractions.Ring IntDom
open import Fields.FieldOfFractions.Field IntDom
open import Fields.FieldOfFractions.Order IntDom OrderedRing
: Set
= fieldOfFractionsSet
_+Q_ :
a +Q b = fieldOfFractionsPlus a b
_*Q_ :
a *Q b = fieldOfFractionsTimes a b
Ring : Ring fieldOfFractionsSetoid _+Q_ _*Q_
Ring = fieldOfFractionsRing
0Q :
0Q = Ring.0R Ring
injectionQ :
injectionQ z = z ,, (nonneg 1 , λ ())
Field : Field Ring
Field = fieldOfFractions
_<Q_ : Set
_<Q_ = fieldOfFractionsComparison
_=Q_ : Set
a =Q b = Setoid.__ fieldOfFractionsSetoid a b
reflQ : {x : } (x =Q x)
reflQ {x} = Equivalence.reflexive (Setoid.eq fieldOfFractionsSetoid) {x}
_≤Q_ : Set
a ≤Q b = (a <Q b) || (a =Q b)
negateQ :
negateQ a = Group.inverse (Ring.additiveGroup Ring) a
_-Q_ :
a -Q b = a +Q negateQ b
a-A : (a : ) (a -Q a) =Q 0Q
a-A a = Group.invRight (Ring.additiveGroup Ring) {a}
PartialOrder : SetoidPartialOrder fieldOfFractionsSetoid fieldOfFractionsComparison
PartialOrder = fieldOfFractionsOrder
TotalOrder : SetoidTotalOrder fieldOfFractionsOrder
TotalOrder = fieldOfFractionsTotalOrder
open SetoidTotalOrder fieldOfFractionsTotalOrder
open SetoidPartialOrder partial
open Setoid fieldOfFractionsSetoid
negateQWellDefined : (a b : ) (a =Q b) (negateQ a) =Q (negateQ b)
negateQWellDefined a b a=b = inverseWellDefined (Ring.additiveGroup Ring) {a} {b} a=b
POrdered : PartiallyOrderedRing Ring partial
POrdered = fieldOfFractionsPOrderedRing
Ordered : TotallyOrderedRing POrdered
Ordered = fieldOfFractionsOrderedRing