mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-18 01:38:45 +00:00
Fix up the structure of Actions and SymmetricGroups (#67)
This commit is contained in:
26
Groups/Actions/Definition.agda
Normal file
26
Groups/Actions/Definition.agda
Normal file
@@ -0,0 +1,26 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Setoids.Setoids
|
||||
open import Functions
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
open import Numbers.Naturals.Naturals
|
||||
open import Sets.FinSet
|
||||
open import Groups.Definition
|
||||
open import Groups.Lemmas
|
||||
open import Groups.Groups
|
||||
open import Groups.Groups2
|
||||
open import Sets.EquivalenceRelations
|
||||
|
||||
module Groups.Actions.Definition where
|
||||
|
||||
record GroupAction {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·_ : A → A → A} {B : Set n} (G : Group S _·_) (X : Setoid {n} {p} B) : Set (m ⊔ n ⊔ o ⊔ p) where
|
||||
open Group G
|
||||
open Setoid S renaming (_∼_ to _∼G_)
|
||||
open Setoid X renaming (_∼_ to _∼X_)
|
||||
field
|
||||
action : A → B → B
|
||||
actionWellDefined1 : {g h : A} → {x : B} → (g ∼G h) → action g x ∼X action h x
|
||||
actionWellDefined2 : {g : A} → {x y : B} → (x ∼X y) → action g x ∼X action g y
|
||||
identityAction : {x : B} → action 0G x ∼X x
|
||||
associativeAction : {x : B} → {g h : A} → action (g · h) x ∼X action g (action h x)
|
Reference in New Issue
Block a user