Move quotient group (#66)

This commit is contained in:
Patrick Stevens
2019-11-08 12:26:37 +00:00
committed by GitHub
parent 82b81b4bab
commit cac9d034c2
4 changed files with 82 additions and 62 deletions

View File

@@ -73,68 +73,6 @@ quotientGroupSetoid {A = A} {S = S} {T = T} {_·A_ = _·A_} {_·B_ = _·B_} G {H
k : f (m ·A ((Group.0G G) ·A Group.inverse G o)) 0G
k = transitive (GroupHom.wellDefined fHom (Group.+WellDefined G (Equivalence.reflexive (Setoid.eq S)) (Group.+WellDefined G (Equivalence.symmetric (Setoid.eq S) (Group.invLeft G)) (Equivalence.reflexive (Setoid.eq S))))) j
quotientGroup : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {underf : A B} (f : GroupHom G H underf) Group (quotientGroupSetoid G f) _·A_
Group.+WellDefined (quotientGroup {S = S} {T = T} {_·A_ = _·A_} {_·B_ = _·B_} G {H = H} {underf = f} fHom) {x} {y} {m} {n} x~m y~n = ans
where
open Setoid T
open Equivalence (Setoid.eq T)
p1 : f ((x ·A y) ·A (Group.inverse G (m ·A n))) f ((x ·A y) ·A ((Group.inverse G n) ·A (Group.inverse G m)))
p2 : f ((x ·A y) ·A ((Group.inverse G n) ·A (Group.inverse G m))) f (x ·A ((y ·A (Group.inverse G n)) ·A (Group.inverse G m)))
p3 : f (x ·A ((y ·A (Group.inverse G n)) ·A (Group.inverse G m))) (f x) ·B f ((y ·A (Group.inverse G n)) ·A (Group.inverse G m))
p4 : (f x) ·B f ((y ·A (Group.inverse G n)) ·A (Group.inverse G m)) (f x) ·B (f (y ·A (Group.inverse G n)) ·B f (Group.inverse G m))
p5 : (f x) ·B (f (y ·A (Group.inverse G n)) ·B f (Group.inverse G m)) (f x) ·B (Group.0G H ·B f (Group.inverse G m))
p6 : (f x) ·B (Group.0G H ·B f (Group.inverse G m)) (f x) ·B f (Group.inverse G m)
p7 : (f x) ·B f (Group.inverse G m) f (x ·A (Group.inverse G m))
p8 : f (x ·A (Group.inverse G m)) Group.0G H
p1 = GroupHom.wellDefined fHom (Group.+WellDefined G (Equivalence.reflexive (Setoid.eq S)) (invContravariant G))
p2 = GroupHom.wellDefined fHom (Equivalence.symmetric (Setoid.eq S) (fourWay+Associative G))
p3 = GroupHom.groupHom fHom
p4 = Group.+WellDefined H reflexive (GroupHom.groupHom fHom)
p5 = Group.+WellDefined H reflexive (replaceGroupOp H (symmetric y~n) reflexive reflexive reflexive reflexive)
p6 = Group.+WellDefined H reflexive (Group.identLeft H)
p7 = symmetric (GroupHom.groupHom fHom)
p8 = x~m
ans : f ((x ·A y) ·A (Group.inverse G (m ·A n))) Group.0G H
ans = transitive p1 (transitive p2 (transitive p3 (transitive p4 (transitive p5 (transitive p6 (transitive p7 p8))))))
Group.0G (quotientGroup G fHom) = Group.0G G
Group.inverse (quotientGroup G fHom) = Group.inverse G
Group.+Associative (quotientGroup {S = S} {T = T} {_·A_ = _·A_} G {H = H} {underf = f} fHom) {a} {b} {c} = ans
where
open Setoid T
open Equivalence (Setoid.eq T)
ans : f ((a ·A (b ·A c)) ·A (Group.inverse G ((a ·A b) ·A c))) Group.0G H
ans = transitive (GroupHom.wellDefined fHom (transferToRight'' G (Group.+Associative G))) (imageOfIdentityIsIdentity fHom)
Group.identRight (quotientGroup {S = S} {T = T} {_·A_ = _·A_} G {H = H} {underf = f} fHom) {a} = ans
where
open Group G
open Setoid T
open Equivalence eq
transitiveG = Equivalence.transitive (Setoid.eq S)
ans : f ((a ·A 0G) ·A inverse a) Group.0G H
ans = transitive (GroupHom.wellDefined fHom (transitiveG (Group.+WellDefined G (Group.identRight G) (Equivalence.reflexive (Setoid.eq S))) (Group.invRight G))) (imageOfIdentityIsIdentity fHom)
Group.identLeft (quotientGroup {S = S} {T = T} {_·A_ = _·A_} G {H = H} {underf = f} fHom) {a} = ans
where
open Group G
open Setoid T
open Equivalence eq
transitiveG = Equivalence.transitive (Setoid.eq S)
ans : f ((0G ·A a) ·A (inverse a)) Group.0G H
ans = transitive (GroupHom.wellDefined fHom (transitiveG (Group.+WellDefined G (Group.identLeft G) (Equivalence.reflexive (Setoid.eq S))) (Group.invRight G))) (imageOfIdentityIsIdentity fHom)
Group.invLeft (quotientGroup {S = S} {T = T} {_·A_ = _·A_} G {H = H} {underf = f} fHom) {x} = ans
where
open Group G
open Setoid T
open Equivalence eq
ans : f ((inverse x ·A x) ·A (inverse 0G)) (Group.0G H)
ans = transitive (GroupHom.wellDefined fHom (Equivalence.transitive (Setoid.eq S) (replaceGroupOp G (Equivalence.symmetric (Setoid.eq S) (Group.invLeft G)) (Equivalence.symmetric (Setoid.eq S) (invIdent G)) (Equivalence.reflexive (Setoid.eq S)) ((Equivalence.reflexive (Setoid.eq S))) ((Equivalence.reflexive (Setoid.eq S)))) (identRight {0G}))) (imageOfIdentityIsIdentity fHom)
Group.invRight (quotientGroup {S = S} {T = T} {_·A_ = _·A_} G {H = H} {underf = f} fHom) {x} = ans
where
open Group G
open Setoid T
open Equivalence eq
ans : f ((x ·A inverse x) ·A (inverse 0G)) (Group.0G H)
ans = transitive (GroupHom.wellDefined fHom (Equivalence.transitive (Setoid.eq S) (replaceGroupOp G (Equivalence.symmetric (Setoid.eq S) (Group.invRight G)) (Equivalence.symmetric (Setoid.eq S) (invIdent G)) (Equivalence.reflexive (Setoid.eq S)) (Equivalence.reflexive (Setoid.eq S)) (Equivalence.reflexive (Setoid.eq S))) (identRight {0G}))) (imageOfIdentityIsIdentity fHom)
{-
quotientHom : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_}{f : A → B} → (fHom : GroupHom G H f) → A → A
quotientHom {S = S} {T = T} {_·A_ = _·A_} {_·B_ = _·B_} G {f = f} fHom a = {!!}