mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-16 08:58:39 +00:00
Rationals (#3)
This commit is contained in:
13
Fields.agda
13
Fields.agda
@@ -19,6 +19,19 @@ module Fields where
|
||||
allInvertible : (a : A) → ((a ∼ Group.identity (Ring.additiveGroup R)) → False) → Sg A (λ t → t * a ∼ 1R)
|
||||
nontrivial : (0R ∼ 1R) → False
|
||||
|
||||
record Field' {m n : _} : Set (lsuc m ⊔ lsuc n) where
|
||||
field
|
||||
A : Set m
|
||||
S : Setoid {m} {n} A
|
||||
_+_ : A → A → A
|
||||
_*_ : A → A → A
|
||||
R : Ring S _+_ _*_
|
||||
isField : Field R
|
||||
|
||||
encapsulateField : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (F : Field R) → Field'
|
||||
encapsulateField {A = A} {S = S} {_+_} {_*_} {R} F = record { A = A ; S = S ; _+_ = _+_ ; _*_ = _*_ ; R = R ; isField = F }
|
||||
|
||||
|
||||
{-
|
||||
record OrderedField {n} {A : Set n} {R : Ring A} (F : Field R) : Set (lsuc n) where
|
||||
open Field F
|
||||
|
Reference in New Issue
Block a user