Reshuffle in preparation to break the dependency on N's implementation (#75)

This commit is contained in:
Patrick Stevens
2019-11-17 10:01:39 +00:00
committed by GitHub
parent ff6ef4f1a1
commit c55dd5f63e
53 changed files with 2493 additions and 2388 deletions

View File

@@ -7,8 +7,9 @@ open import Groups.Definition
open import Groups.Groups
open import Groups.Abelian.Definition
open import Groups.FiniteGroups.Definition
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Naturals
open import Numbers.Naturals.Addition -- TODO remove this dependency
open import Numbers.Naturals.Order
open import Numbers.Primes.PrimeNumbers
open import Setoids.Setoids
open import Sets.FinSet
@@ -20,6 +21,7 @@ open import Orders
open import Numbers.Modulo.Definition
module Numbers.Modulo.Addition where
open TotalOrder TotalOrder
cancelSumFromInequality : {a b c : } a +N b <N a +N c b <N c
cancelSumFromInequality {a} {b} {c} (le x proof) = le x help
@@ -29,7 +31,7 @@ cancelSumFromInequality {a} {b} {c} (le x proof) = le x help
_+n_ : {n : } {pr : 0 <N n} n n pr n n pr n n pr
_+n_ {0} {le x ()} a b
_+n_ {succ n} {pr} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } with orderIsTotal (a +N b) (succ n)
_+n_ {succ n} {pr} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } with totality (a +N b) (succ n)
_+n_ {succ n} {pr} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } | inl (inl (a+b<n)) = record { x = a +N b ; xLess = a+b<n }
_+n_ {succ n} {pr} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } | inl (inr (n<a+b)) = record { x = subtractionNResult.result sub ; xLess = pr2 }
where
@@ -45,12 +47,12 @@ _+n_ {succ n} {pr} record { x = a ; xLess = aLess } record { x = b ; xLess = bLe
plusZnIdentityRight : {n : } {pr : 0 <N n} (a : n n pr) (a +n record { x = 0 ; xLess = pr }) a
plusZnIdentityRight {zero} {()} a
plusZnIdentityRight {succ x} {_} record { x = a ; xLess = aLess } with orderIsTotal (a +N 0) (succ x)
plusZnIdentityRight {succ x} {_} record { x = a ; xLess = aLess } with totality (a +N 0) (succ x)
plusZnIdentityRight {succ x} {_} record { x = a ; xLess = aLess } | inl (inl a<sx) = equalityZn _ _ (Semiring.commutative Semiring a 0)
plusZnIdentityRight {succ x} {_} record { x = a ; xLess = aLess } | inl (inr sx<a) = exFalso (f aLess sx<a)
where
f : (aL : a <N succ x) (sx<a : succ x <N a +N 0) False
f aL sx<a rewrite Semiring.commutative Semiring a 0 = orderIsIrreflexive aL sx<a
f aL sx<a rewrite Semiring.commutative Semiring a 0 = irreflexive (<Transitive aL sx<a)
plusZnIdentityRight {succ x} {_} record { x = a ; xLess = aLess } | inr a=sx = exFalso (f aLess a=sx)
where
f : (aL : a <N succ x) (a=sx : a +N 0 succ x) False
@@ -59,7 +61,7 @@ plusZnIdentityRight {succ x} {_} record { x = a ; xLess = aLess } | inr a=sx = e
plusZnIdentityLeft : {n : } {pr : 0 <N n} (a : n n pr) (record { x = 0 ; xLess = pr }) +n a a
plusZnIdentityLeft {zero} {()}
plusZnIdentityLeft {succ n} {pr} record { x = x ; xLess = xLess } with orderIsTotal x (succ n)
plusZnIdentityLeft {succ n} {pr} record { x = x ; xLess = xLess } with totality x (succ n)
plusZnIdentityLeft {succ n} {pr} record { x = x ; xLess = xLess } | inl (inl x<succn) rewrite <NRefl x<succn xLess = refl
plusZnIdentityLeft {succ n} {pr} record { x = x ; xLess = xLess } | inl (inr succn<x) = exFalso (TotalOrder.irreflexive TotalOrder (TotalOrder.<Transitive TotalOrder succn<x xLess))
plusZnIdentityLeft {succ n} {pr} record { x = x ; xLess = xLess } | inr x=succn rewrite x=succn = exFalso (TotalOrder.irreflexive TotalOrder xLess)
@@ -69,28 +71,28 @@ subLemma {a} {b} {c} a<b a<c b=c rewrite b=c | <NRefl a<b a<c = refl
plusZnCommutative : {n : } {pr : 0 <N n} (a b : n n pr) (a +n b) b +n a
plusZnCommutative {zero} {()} a b
plusZnCommutative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } with orderIsTotal (a +N b) (succ n)
plusZnCommutative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } | inl (inl a+b<sn) with orderIsTotal (b +N a) (succ n)
plusZnCommutative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } with totality (a +N b) (succ n)
plusZnCommutative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } | inl (inl a+b<sn) with totality (b +N a) (succ n)
plusZnCommutative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } | inl (inl a+b<sn) | inl (inl b+a<sn) = equalityZn _ _ (Semiring.commutative Semiring a b)
plusZnCommutative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } | inl (inl a+b<sn) | inl (inr sn<b+a) = exFalso (f a+b<sn sn<b+a)
where
f : (a +N b) <N succ n succ n <N b +N a False
f pr1 pr2 rewrite Semiring.commutative Semiring b a = TotalOrder.irreflexive TotalOrder (orderIsTransitive pr2 pr1)
f pr1 pr2 rewrite Semiring.commutative Semiring b a = TotalOrder.irreflexive TotalOrder (<Transitive pr2 pr1)
plusZnCommutative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } | inl (inl a+b<sn) | inr b+a=sn = exFalso (f a+b<sn b+a=sn)
where
f : (a +N b) <N succ n b +N a succ n False
f pr1 eq rewrite Semiring.commutative Semiring b a | eq = TotalOrder.irreflexive TotalOrder pr1
plusZnCommutative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } | inl (inr sn<a+b) with orderIsTotal (b +N a) (succ n)
plusZnCommutative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } | inl (inr sn<a+b) with totality (b +N a) (succ n)
plusZnCommutative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } | inl (inr sn<a+b) | inl (inl b+a<sn) = exFalso (f sn<a+b b+a<sn)
where
f : succ n <N a +N b b +N a <N succ n False
f pr1 pr2 rewrite Semiring.commutative Semiring b a = TotalOrder.irreflexive TotalOrder (orderIsTransitive sn<a+b b+a<sn)
f pr1 pr2 rewrite Semiring.commutative Semiring b a = TotalOrder.irreflexive TotalOrder (<Transitive sn<a+b b+a<sn)
plusZnCommutative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } | inl (inr sn<a+b) | inl (inr sn<b+a) = equalityZn _ _ (subLemma sn<a+b sn<b+a (Semiring.commutative Semiring a b))
plusZnCommutative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } | inl (inr sn<a+b) | inr sn=b+a = exFalso (f sn<a+b sn=b+a)
where
f : succ n <N a +N b b +N a succ n False
f pr eq rewrite Semiring.commutative Semiring b a | eq = TotalOrder.irreflexive TotalOrder pr
plusZnCommutative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } | inr sn=a+b with orderIsTotal (b +N a) (succ n)
plusZnCommutative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } | inr sn=a+b with totality (b +N a) (succ n)
plusZnCommutative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } | inr sn=a+b | inl (inl b+a<sn) = exFalso f
where
f : False

View File

@@ -7,8 +7,8 @@ open import Groups.Definition
open import Groups.Groups
open import Groups.Abelian.Definition
open import Groups.FiniteGroups.Definition
open import Numbers.Naturals.Naturals
open import Numbers.Naturals.Addition -- TODO remove this dependency
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Numbers.Primes.PrimeNumbers
open import Setoids.Setoids
open import Sets.FinSet

View File

@@ -7,8 +7,10 @@ open import Groups.Definition
open import Groups.Groups
open import Groups.Abelian.Definition
open import Groups.FiniteGroups.Definition
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Numbers.Naturals.Order.Lemmas
open import Numbers.Naturals.Naturals
open import Numbers.Naturals.Addition -- TODO remove this dependency
open import Numbers.Primes.PrimeNumbers
open import Setoids.Setoids
open import Sets.FinSet
@@ -22,8 +24,10 @@ open import Numbers.Modulo.Addition
module Numbers.Modulo.Group where
open TotalOrder TotalOrder
help30 : {a b c n : } (c <N n) (a +N b n) (n<b+c : n <N b +N c) (n <N a +N subtractionNResult.result (-N (inl n<b+c))) False
help30 {a} {b} {c} {n} c<n a+b=n n<b+c x = TotalOrder.irreflexive TotalOrder (orderIsTransitive pr5 c<n)
help30 {a} {b} {c} {n} c<n a+b=n n<b+c x = TotalOrder.irreflexive TotalOrder (<Transitive pr5 c<n)
where
pr : n +N n <N a +N (subtractionNResult.result (-N (inl n<b+c)) +N n)
pr = identityOfIndiscernablesRight _<N_ (additionPreservesInequality n x) (equalityCommutative (Semiring.+Associative Semiring a _ n))
@@ -92,7 +96,7 @@ help25 : {a b c n : } → (a +N b ≡ n) → (b +N c ≡ n) → (a +N 0 ≡ c
help25 {a} {b} {c} {n} a+b=n b+c=n rewrite Semiring.commutative Semiring a 0 | Semiring.commutative Semiring a b | equalityCommutative a+b=n = equalityCommutative (canSubtractFromEqualityLeft b+c=n)
help24 : {a n : } (a <N n) (n <N a +N 0) False
help24 {a} {n} a<n n<a+0 rewrite Semiring.commutative Semiring a 0 = TotalOrder.irreflexive TotalOrder (orderIsTransitive a<n n<a+0)
help24 {a} {n} a<n n<a+0 rewrite Semiring.commutative Semiring a 0 = TotalOrder.irreflexive TotalOrder (<Transitive a<n n<a+0)
help23 : {a n : } (a <N n) (a +N 0 n) False
help23 {a} {n} a<n a+0=n rewrite Semiring.commutative Semiring a 0 | a+0=n = TotalOrder.irreflexive TotalOrder a<n
@@ -154,7 +158,7 @@ help19 {a} {b} {c} {n} b+c<n n<a+b a<n pr = TotalOrder.irreflexive TotalOrder
r = addStrongInequalities a<n b+c<n
help18 : {a b c n : } (b+c<n : b +N c <N n) (n<a+b : n <N a +N b) (a <N n) (n <N subtractionNResult.result (-N (inl n<a+b)) +N c) False
help18 {a} {b} {c} {n} b+c<n n<a+b a<n pr = TotalOrder.irreflexive TotalOrder (orderIsTransitive p4 a<n)
help18 {a} {b} {c} {n} b+c<n n<a+b a<n pr = TotalOrder.irreflexive TotalOrder (<Transitive p4 a<n)
where
p : n +N n <N (n +N subtractionNResult.result (-N (inl n<a+b))) +N c
p = identityOfIndiscernablesRight _<N_ (additionPreservesInequalityOnLeft n pr) (Semiring.+Associative Semiring n _ c)
@@ -163,7 +167,7 @@ help18 {a} {b} {c} {n} b+c<n n<a+b a<n pr = TotalOrder.irreflexive TotalOrder
p2 : n +N n <N a +N (b +N c)
p2 = identityOfIndiscernablesRight _<N_ p' (equalityCommutative (Semiring.+Associative Semiring a b c))
p3 : n +N n <N a +N n
p3 = orderIsTransitive p2 (additionPreservesInequalityOnLeft a b+c<n)
p3 = <Transitive p2 (additionPreservesInequalityOnLeft a b+c<n)
p4 : n <N a
p4 = subtractionPreservesInequality n p3
@@ -182,7 +186,7 @@ help17 {a} {b} {c} {n} n<b+c n<a+b p1 p2 = TotalOrder.irreflexive TotalOrder
pr3 = identityOfIndiscernablesLeft _≡_ pr2'' (equalityCommutative (Semiring.+Associative Semiring a b c))
help16 : {a b c n : } (n<b+c : n <N b +N c) (n<a+b : n <N a +N b) (a +N subtractionNResult.result (-N (inl n<b+c))) <N n (pr : n <N subtractionNResult.result (-N (inl n<a+b)) +N c) a +N subtractionNResult.result (-N (inl n<b+c)) subtractionNResult.result (-N (inl pr))
help16 {a} {b} {c} {n} n<b+c n<a+b pr1 pr2 = exFalso (TotalOrder.irreflexive TotalOrder (orderIsTransitive pr3 pr1''))
help16 {a} {b} {c} {n} n<b+c n<a+b pr1 pr2 = exFalso (TotalOrder.irreflexive TotalOrder (<Transitive pr3 pr1''))
where
pr1' : a +N (subtractionNResult.result (-N (inl n<b+c)) +N n) <N n +N n
pr1' = identityOfIndiscernablesLeft _<N_ (additionPreservesInequality n pr1) (equalityCommutative (Semiring.+Associative Semiring a _ n))
@@ -196,7 +200,7 @@ help16 {a} {b} {c} {n} n<b+c n<a+b pr1 pr2 = exFalso (TotalOrder.irreflexive
pr3 = identityOfIndiscernablesRight _<N_ pr2'' (equalityCommutative (Semiring.+Associative Semiring a b c))
help15 : {a b c n : } (n<b+c : n <N b +N c) (n<a+b : n <N a +N b) (n <N a +N subtractionNResult.result (-N (inl n<b+c))) (subtractionNResult.result (-N (inl n<a+b)) +N c) <N n False
help15 {a} {b} {c} {n} n<b+c n<a+b pr1 pr2 = TotalOrder.irreflexive TotalOrder (orderIsTransitive p2'' p1')
help15 {a} {b} {c} {n} n<b+c n<a+b pr1 pr2 = TotalOrder.irreflexive TotalOrder (<Transitive p2'' p1')
where
p1 : (n +N subtractionNResult.result (-N (inl n<a+b))) +N c <N n +N n
p1 = identityOfIndiscernablesLeft _<N_ (additionPreservesInequalityOnLeft n pr2) (Semiring.+Associative Semiring n _ c)
@@ -250,7 +254,7 @@ help12 {a} {b} {c} {n} n<b+c n<a+b pr1 pr2 = TotalOrder.irreflexive TotalOrde
lemm4 = identityOfIndiscernablesRight _<N_ lemm2 (equalityCommutative lemm3)
help11 : {a b c n : } (a <N n) (b +N c n) (n<a+b : n <N a +N b) (n <N subtractionNResult.result (-N (inl n<a+b)) +N c) False
help11 {a} {b} {c} {n} a<n b+c=n n<a+b pr1 = TotalOrder.irreflexive TotalOrder (orderIsTransitive a<n lemm5)
help11 {a} {b} {c} {n} a<n b+c=n n<a+b pr1 = TotalOrder.irreflexive TotalOrder (<Transitive a<n lemm5)
where
pr : {a b c : } a +N (b +N c) b +N (a +N c)
pr {a} {b} {c} rewrite Semiring.+Associative Semiring a b c | Semiring.commutative Semiring a b | equalityCommutative (Semiring.+Associative Semiring b a c) = refl
@@ -287,7 +291,7 @@ help9 : {a n : } → (a +N 0 ≡ n) → (a <N n) → False
help9 {a} {n} n=a+0 a<n rewrite Semiring.commutative Semiring a 0 | n=a+0 = TotalOrder.irreflexive TotalOrder a<n
help8 : {a n : } (n <N a +N 0) (a <N n) False
help8 {a} {n} n<a+0 a<n rewrite Semiring.commutative Semiring a 0 = TotalOrder.irreflexive TotalOrder (orderIsTransitive a<n n<a+0)
help8 {a} {n} n<a+0 a<n rewrite Semiring.commutative Semiring a 0 = TotalOrder.irreflexive TotalOrder (<Transitive a<n n<a+0)
help6 : {a b c n : } (b +N c n) (n<a+b : n <N a +N b) (a +N 0 subtractionNResult.result (-N (inl n<a+b)) +N c)
help6 {a} {b} {c} {n} b+c=n n<a+b rewrite Semiring.commutative Semiring a 0 = canSubtractFromEqualityLeft {n} lem'
@@ -319,7 +323,7 @@ help4 {a} {b} {c} {n} n<a+'b+c n<a+b = canSubtractFromEqualityLeft lemma'
lemma' = identityOfIndiscernablesRight _≡_ lemma (equalityCommutative (Semiring.+Associative Semiring n (subtractionNResult.result (-N (inl n<a+b))) c))
help3 : {a b c n : } (a <N n) (b <N n) (c <N n) (a +N b <N n) (pr : n <N b +N c) a +N subtractionNResult.result (-N (inl pr)) n False
help3 {a} {b} {c} {n} a<n b<n c<n a+b<n n<b+c pr = TotalOrder.irreflexive TotalOrder (orderIsTransitive (inter4 inter3) c<n)
help3 {a} {b} {c} {n} a<n b<n c<n a+b<n n<b+c pr = TotalOrder.irreflexive TotalOrder (<Transitive (inter4 inter3) c<n)
where
inter : a +N (n +N subtractionNResult.result (-N (inl n<b+c))) n +N n
inter = identityOfIndiscernablesLeft _≡_ (applyEquality (n +N_) pr) (lemma n a (subtractionNResult.result (-N (inl n<b+c))))
@@ -356,27 +360,27 @@ help1 {a} {b} {c} {n} sn<b+c pr1 a+b<sn a<sn b<sn c<sn | record { result = b+c-s
eep2 : a +N (b +N c) <N succ n +N c
eep2 rewrite Semiring.+Associative Semiring a b c = additionPreservesInequality c a+b<sn
eep2' : a +N (b +N c) <N succ n +N succ n
eep2' = orderIsTransitive eep2 (additionPreservesInequalityOnLeft (succ n) c<sn)
eep2' = <Transitive eep2 (additionPreservesInequalityOnLeft (succ n) c<sn)
ans : False
ans = TotalOrder.irreflexive TotalOrder (orderIsTransitive eep eep2')
ans = TotalOrder.irreflexive TotalOrder (<Transitive eep eep2')
plusZnAssociative : {n : } {pr : 0 <N n} (a b c : n n pr) a +n (b +n c) ((a +n b) +n c)
plusZnAssociative {zero} {()}
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess} record { x = c ; xLess = cLess } with orderIsTotal (a +N b) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) with orderIsTotal ((a +N b) +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inl a+b+c<sn) with orderIsTotal (b +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inl a+b+c<sn) | inl (inl b+c<sn) with orderIsTotal (a +N (b +N c)) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess} record { x = c ; xLess = cLess } with totality (a +N b) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) with totality ((a +N b) +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inl a+b+c<sn) with totality (b +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inl a+b+c<sn) | inl (inl b+c<sn) with totality (a +N (b +N c)) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inl a+b+c<sn) | inl (inl b+c<sn) | inl (inl a+'b+c<sn) = equalityZn _ _ (Semiring.+Associative Semiring a b c)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inl a+b+c<sn) | inl (inl b+c<sn) | inl (inr sn<a+'b+c) = exFalso (false {succ n} a+b+c<sn sn<a+'b+c)
where
false : {x : } (a +N b) +N c <N succ n succ n <N a +N (b +N c) False
false pr1 pr2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) = TotalOrder.irreflexive TotalOrder (orderIsTransitive pr1 pr2)
false pr1 pr2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) = TotalOrder.irreflexive TotalOrder (<Transitive pr1 pr2)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inl a+b+c<sn) | inl (inl b+c<sn) | inr sn=a+b+c = exFalso (false a+b+c<sn sn=a+b+c)
where
false : {x : } (a +N b) +N c <N x (a +N (b +N c)) x False
false p1 p2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) | p2 = TotalOrder.irreflexive TotalOrder p1
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inl a+b+c<sn) | inl (inr sn<b+c) with orderIsTotal (a +N (b +N c)) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inl a+b+c<sn) | inl (inr sn<b+c) | inl (inl _) with orderIsTotal (a +N subtractionNResult.result (-N (inl sn<b+c))) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inl a+b+c<sn) | inl (inr sn<b+c) with totality (a +N (b +N c)) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inl a+b+c<sn) | inl (inr sn<b+c) | inl (inl _) with totality (a +N subtractionNResult.result (-N (inl sn<b+c))) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inl a+b+c<sn) | inl (inr sn<b+c) | inl (inl _) | inl (inl x) with -N (inl sn<b+c)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inl a+b+c<sn) | inl (inr sn<b+c) | inl (inl a+'b+c<sn) | inl (inl x) | record { result = result ; pr = pr } = exFalso (false a+'b+c<sn pr)
where
@@ -405,7 +409,7 @@ plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ;
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inl a+b+c<sn) | inl (inr sn<b+c) | inl (inr x) = equalityZn _ _ (exFalso (false {succ n} a+b+c<sn x))
where
false : {x : } (a +N b) +N c <N succ n succ n <N a +N (b +N c) False
false pr1 pr2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) = TotalOrder.irreflexive TotalOrder (orderIsTransitive pr1 pr2)
false pr1 pr2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) = TotalOrder.irreflexive TotalOrder (<Transitive pr1 pr2)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inl a+b+c<sn) | inl (inr sn<b+c) | inr x = exFalso (false a+b+c<sn x)
where
false : (a +N b) +N c <N succ n a +N (b +N c) succ n False
@@ -414,12 +418,12 @@ plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ;
where
false : (a +N b) +N c <N succ n b +N c succ n False
false pr1 pr2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) | pr2 | Semiring.commutative Semiring a (succ n) = cannotAddAndEnlarge' a+b+c<sn
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) with orderIsTotal (b +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inl (inl b+c<sn) with orderIsTotal (a +N (b +N c)) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) with totality (b +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inl (inl b+c<sn) with totality (a +N (b +N c)) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inl (inl b+c<sn) | inl (inl a+'b+c<sn) = exFalso (false sn<a+b+c a+'b+c<sn)
where
false : (succ n <N (a +N b) +N c) a +N (b +N c) <N succ n False
false pr1 pr2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) = TotalOrder.irreflexive TotalOrder (orderIsTransitive pr1 pr2)
false pr1 pr2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) = TotalOrder.irreflexive TotalOrder (<Transitive pr1 pr2)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inl (inl b+c<sn) | inl (inr sn<a+'b+c) = equalityZn _ _ ans
where
lemma : succ n +N ((a +N b) +N c) (a +N (b +N c)) +N succ n
@@ -430,12 +434,12 @@ plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ;
where
false : succ n <N (a +N b) +N c (a +N (b +N c)) succ n False
false pr1 pr2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) | pr2 = TotalOrder.irreflexive TotalOrder sn<a+b+c
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inl (inr sn<b+c) with orderIsTotal (a +N (b +N c)) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inl (inr sn<b+c) with totality (a +N (b +N c)) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inl (inr sn<b+c) | inl (inl a+b+c<sn) = exFalso (false sn<a+b+c a+b+c<sn)
where
false : succ n <N (a +N b) +N c (a +N (b +N c)) <N succ n False
false pr1 pr2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) = TotalOrder.irreflexive TotalOrder (orderIsTransitive pr1 pr2)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inl (inr sn<b+c) | inl (inr _) with orderIsTotal (a +N subtractionNResult.result (-N (inl sn<b+c))) (succ n)
false pr1 pr2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) = TotalOrder.irreflexive TotalOrder (<Transitive pr1 pr2)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inl (inr sn<b+c) | inl (inr _) with totality (a +N subtractionNResult.result (-N (inl sn<b+c))) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inl (inr sn<b+c) | inl (inr _) | inl (inl x) = equalityZn _ _ (help2 {a} {b} {c} {n} sn<b+c sn<a+b+c)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inl (inr sn<b+c) | inl (inr _) | inl (inr x) = equalityZn _ _ (exFalso (help1 sn<b+c x a+b<sn aLess bLess cLess))
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inl (inr sn<b+c) | inl (inr _) | inr x = exFalso (help3 aLess bLess cLess a+b<sn sn<b+c x)
@@ -443,12 +447,12 @@ plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ;
where
false : (succ n <N (a +N b) +N c) (a +N (b +N c) succ n) False
false pr1 pr2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) | pr2 = TotalOrder.irreflexive TotalOrder pr1
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inr sn=b+c with orderIsTotal (a +N (b +N c)) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inr sn=b+c with totality (a +N (b +N c)) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inr sn=b+c | inl (inl x) = exFalso (false sn<a+b+c x)
where
false : succ n <N (a +N b) +N c a +N (b +N c) <N succ n False
false p1 p2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) = TotalOrder.irreflexive TotalOrder (orderIsTransitive p1 p2)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inr sn=b+c | inl (inr _) with orderIsTotal (a +N 0) (succ n)
false p1 p2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) = TotalOrder.irreflexive TotalOrder (<Transitive p1 p2)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inr sn=b+c | inl (inr _) with totality (a +N 0) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inr sn=b+c | inl (inr _) | inl (inl x) = equalityZn _ _ (ans sn=b+c)
where
ans : b +N c succ n a +N 0 subtractionNResult.result (-N (inl sn<a+b+c))
@@ -457,8 +461,8 @@ plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ;
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inr sn=b+c | inl (inr _) | inl (inr x) = exFalso (false b a+b<sn x)
where
false : (b : ) a +N b <N succ n succ n <N a +N 0 False
false zero pr1 pr2 rewrite Semiring.commutative Semiring a 0 = TotalOrder.irreflexive TotalOrder (orderIsTransitive pr1 pr2)
false (succ b) pr1 pr2 rewrite Semiring.commutative Semiring a 0 = TotalOrder.irreflexive TotalOrder (orderIsTransitive pr2 (orderIsTransitive (le b (Semiring.commutative Semiring (succ b) a)) pr1))
false zero pr1 pr2 rewrite Semiring.commutative Semiring a 0 = TotalOrder.irreflexive TotalOrder (<Transitive pr1 pr2)
false (succ b) pr1 pr2 rewrite Semiring.commutative Semiring a 0 = TotalOrder.irreflexive TotalOrder (<Transitive pr2 (<Transitive (le b (Semiring.commutative Semiring (succ b) a)) pr1))
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inl (inr sn<a+b+c) | inr sn=b+c | inl (inr _) | inr x = exFalso (false b a+b<sn x)
where
false : (b : ) a +N b <N succ n a +N 0 succ n False
@@ -468,8 +472,8 @@ plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ;
where
false : succ n <N (a +N b) +N c a +N (b +N c) succ n False
false pr1 pr2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) | pr2 = TotalOrder.irreflexive TotalOrder pr1
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inr sn=a+b+c with orderIsTotal (b +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inr sn=a+b+c | inl (inl b+c<sn) with orderIsTotal (a +N (b +N c)) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inr sn=a+b+c with totality (b +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inr sn=a+b+c | inl (inl b+c<sn) with totality (a +N (b +N c)) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inr sn=a+b+c | inl (inl b+c<sn) | inl (inl a+'b+c<sn) = exFalso (false sn=a+b+c a+'b+c<sn)
where
false : (a +N b) +N c succ n a +N (b +N c) <N succ n False
@@ -483,8 +487,8 @@ plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ;
where
false : (a : ) (a +N b) +N c succ n succ n <N b +N c False
false zero pr1 pr2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) | equalityCommutative pr1 = TotalOrder.irreflexive TotalOrder pr2
false (succ a) pr1 pr2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) | equalityCommutative pr1 = TotalOrder.irreflexive TotalOrder (orderIsTransitive pr2 (le a refl))
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inr sn=a+b+c | inr b+c=sn with orderIsTotal (a +N 0) (succ n)
false (succ a) pr1 pr2 rewrite equalityCommutative (Semiring.+Associative Semiring a b c) | equalityCommutative pr1 = TotalOrder.irreflexive TotalOrder (<Transitive pr2 (le a refl))
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inr sn=a+b+c | inr b+c=sn with totality (a +N 0) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inl a+b<sn) | inr sn=a+b+c | inr b+c=sn | inl (inl a+0<sn) = equalityZn _ _ ans
where
a=0 : (a : ) (a +N b) +N c succ n b +N c succ n a 0
@@ -508,13 +512,13 @@ plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ;
a=0 : (a : ) (a +N a a) a 0
a=0 zero pr = refl
a=0 (succ a) pr = exFalso (naughtE {a} (equalityCommutative (canSubtractFromEqualityRight pr)))
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) with orderIsTotal (b +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inl b+c<sn) with orderIsTotal (a +N (b +N c)) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) with totality (b +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inl b+c<sn) with totality (a +N (b +N c)) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inl b+c<sn) | inl (inl a+'b+c<sn) = exFalso (false sn<a+b a+'b+c<sn)
where
false : succ n <N a +N b a +N (b +N c) <N succ n False
false pr1 pr2 rewrite Semiring.+Associative Semiring a b c = cannotAddAndEnlarge' (orderIsTransitive pr2 pr1)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inl b+c<sn) | inl (inr sn<a+'b+c) with orderIsTotal (subtractionNResult.result (-N (inl sn<a+b)) +N c) (succ n)
false pr1 pr2 rewrite Semiring.+Associative Semiring a b c = cannotAddAndEnlarge' (<Transitive pr2 pr1)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inl b+c<sn) | inl (inr sn<a+'b+c) with totality (subtractionNResult.result (-N (inl sn<a+b)) +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inl b+c<sn) | inl (inr sn<a+'b+c) | inl (inl x) = equalityZn _ _ (help4 {a} {b} {c} {succ n} sn<a+'b+c sn<a+b)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inl b+c<sn) | inl (inr sn<a+'b+c) | inl (inr x) = exFalso (help18 {a} {b} {c} {succ n} b+c<sn sn<a+b aLess x)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inl b+c<sn) | inl (inr sn<a+'b+c) | inr x = exFalso (help19 {a} {b} {c} {succ n} b+c<sn sn<a+b aLess x)
@@ -522,47 +526,47 @@ plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ;
where
false : (succ n <N a +N b) a +N (b +N c) succ n False
false pr1 pr2 rewrite Semiring.+Associative Semiring a b c | equalityCommutative pr2 = cannotAddAndEnlarge' pr1
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) with orderIsTotal (a +N subtractionNResult.result (-N (inl sn<b+c))) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) | inl (inl x) with orderIsTotal (subtractionNResult.result (-N (inl sn<a+b)) +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) with totality (a +N subtractionNResult.result (-N (inl sn<b+c))) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) | inl (inl x) with totality (subtractionNResult.result (-N (inl sn<a+b)) +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) | inl (inl x) | inl (inl x₁) = equalityZn _ _ (help5 {a} {b} {c} {succ n} sn<b+c sn<a+b)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) | inl (inl x) | inl (inr x1) = equalityZn _ _ (help16 {a} {b} {c} {succ n} sn<b+c sn<a+b x x1)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) | inl (inl x) | inr x1 = exFalso (help17 {a} {b} {c} {succ n} sn<b+c sn<a+b x x1)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) | inl (inr x) with orderIsTotal (subtractionNResult.result (-N (inl sn<a+b)) +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) | inl (inr x) with totality (subtractionNResult.result (-N (inl sn<a+b)) +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) | inl (inr x) | inl (inl x1) = equalityZn _ _ (exFalso (help15 {a} {b} {c} {succ n} sn<b+c sn<a+b x x1))
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) | inl (inr x) | inl (inr x1) = equalityZn _ _ (help14 {a} {b} {c} {succ n} sn<b+c sn<a+b x x1)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) | inl (inr x) | inr x1 = equalityZn _ _ (exFalso (help13 {a} {b} {c} {succ n} sn<b+c sn<a+b x x1))
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) | inr x with orderIsTotal (subtractionNResult.result (-N (inl sn<a+b)) +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) | inr x with totality (subtractionNResult.result (-N (inl sn<a+b)) +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) | inr x | inl (inl x1) = equalityZn _ _ (exFalso (help12 {a} {b} {c} {succ n} sn<b+c sn<a+b x x1))
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) | inr x | inl (inr x1) = equalityZn _ _ (exFalso (help10 {a} {b} {c} {succ n} sn<b+c sn<a+b x x1))
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inl (inr sn<b+c) | inr x | inr x₁ = equalityZn _ _ refl
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inr b+c=sn with orderIsTotal (a +N 0) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inr b+c=sn | inl (inl a+0<sn) with orderIsTotal (subtractionNResult.result (-N (inl sn<a+b)) +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inr b+c=sn with totality (a +N 0) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inr b+c=sn | inl (inl a+0<sn) with totality (subtractionNResult.result (-N (inl sn<a+b)) +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inr b+c=sn | inl (inl a+0<sn) | inl (inl x) = equalityZn _ _ (help6 {a} {b} {c} {succ n} b+c=sn sn<a+b)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inr b+c=sn | inl (inl _) | inl (inr x) = equalityZn _ _ (exFalso (help11 {a} {b} {c} {succ n} aLess b+c=sn sn<a+b x))
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inr b+c=sn | inl (inl a+0<sn) | inr x = equalityZn _ _ (exFalso (help7 {a} {b} {c} {succ n} b+c=sn aLess sn<a+b x))
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inr b+c=sn | inl (inr sn<a+0) = exFalso (help8 {a} {succ n} sn<a+0 aLess)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inl (inr sn<a+b) | inr b+c=sn | inr a+0=sn = exFalso (help9 {a} {succ n} a+0=sn aLess)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b with orderIsTotal c (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) with orderIsTotal (b +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) | inl (inl b+c<sn) with orderIsTotal (a +N (b +N c)) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b with totality c (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) with totality (b +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) | inl (inl b+c<sn) with totality (a +N (b +N c)) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) | inl (inl b+c<sn) | inl (inl a+'b+c<sn) = equalityZn _ _ (help27 {a} {b} {c} {n} sn=a+b a+'b+c<sn)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) | inl (inl b+c<sn) | inl (inr sn<a+'b+c) = equalityZn _ _ (help28 {a} {b} {c} {succ n} sn<a+'b+c sn=a+b)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) | inl (inl b+c<sn) | inr a+'b+c=sn = equalityZn _ _ (help26 {a} {b} {c} {succ n} sn=a+b a+'b+c=sn)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) | inl (inr sn<b+c) with orderIsTotal (a +N subtractionNResult.result (-N (inl sn<b+c))) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) | inl (inr sn<b+c) with totality (a +N subtractionNResult.result (-N (inl sn<b+c))) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) | inl (inr sn<b+c) | inl (inl x) = equalityZn _ _ (help31 {a} {b} {c} {succ n} sn=a+b sn<b+c)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) | inl (inr sn<b+c) | inl (inr x) = exFalso (help30 {a} {b} {c} {succ n} cLess sn=a+b sn<b+c x)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) | inl (inr sn<b+c) | inr x = exFalso (help29 {a} {b} {c} {succ n} cLess sn<b+c x sn=a+b)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) | inr b+c=sn with orderIsTotal (a +N 0) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) | inr b+c=sn with totality (a +N 0) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) | inr b+c=sn | inl (inl a+0<sn) = equalityZn _ _ (help25 {a} {b} {c} {succ n} sn=a+b b+c=sn)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) | inr b+c=sn | inl (inr sn<a+0) = exFalso (help24 {a} {succ n} aLess sn<a+0)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inl c<sn) | inr b+c=sn | inr a+0=sn = exFalso (help23 {a} {succ n} aLess a+0=sn)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inr sn<c) = exFalso (TotalOrder.irreflexive TotalOrder (orderIsTransitive sn<c cLess))
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inr c=sn with orderIsTotal (b +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inl (inr sn<c) = exFalso (TotalOrder.irreflexive TotalOrder (<Transitive sn<c cLess))
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inr c=sn with totality (b +N c) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inr c=sn | inl (inl b+c<sn) = exFalso (help b+c<sn)
where
help : (b +N c <N succ n) False
help b+c<sn rewrite equalityCommutative c=sn | Semiring.commutative Semiring b c = cannotAddAndEnlarge' b+c<sn
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inr c=sn | inl (inr sn<b+c) with orderIsTotal (a +N subtractionNResult.result (-N (inl sn<b+c))) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inr c=sn | inl (inr sn<b+c) with totality (a +N subtractionNResult.result (-N (inl sn<b+c))) (succ n)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inr c=sn | inl (inr sn<b+c) | inl (inl x) = exFalso (help20 {a} {b} {c} {succ n} c=sn sn=a+b sn<b+c x)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inr c=sn | inl (inr sn<b+c) | inl (inr x) = exFalso (help22 {a} {b} {c} {succ n} sn=a+b c=sn sn<b+c x)
plusZnAssociative {succ n} {_} record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } | inr sn=a+b | inr c=sn | inl (inr sn<b+c) | inr x = equalityZn _ _ refl
@@ -580,7 +584,7 @@ inverseZn {succ n} {0<n} record { x = (succ a) ; xLess = aLess } = ans , pr
where
ans = record { x = subtractionNResult.result (-N (inl (canRemoveSuccFrom<N aLess))) ; xLess = subLess (succIsPositive a) aLess }
pr : ans +n record { x = (succ a) ; xLess = aLess } record { x = 0 ; xLess = 0<n }
pr with orderIsTotal (subtractionNResult.result (-N (inl (canRemoveSuccFrom<N aLess))) +N (succ a)) (succ n)
pr with totality (subtractionNResult.result (-N (inl (canRemoveSuccFrom<N aLess))) +N (succ a)) (succ n)
... | inl (inl x) = exFalso f
where
h : subtractionNResult.result (-N (inl (canRemoveSuccFrom<N aLess))) +N succ a succ n