mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-10 14:18:41 +00:00
Quotient ring (#81)
This commit is contained in:
@@ -20,20 +20,20 @@ module Rings.Quotients.Definition {a b c d : _} {A : Set a} {B : Set b} {S : Set
|
||||
|
||||
open import Groups.QuotientGroup.Lemmas (Ring.additiveGroup R) (Ring.additiveGroup R2) (RingHom.groupHom f)
|
||||
|
||||
quotientRing : Ring (quotientGroupSetoid (Ring.additiveGroup R) (RingHom.groupHom f)) _+A_ _*A_
|
||||
Ring.additiveGroup quotientRing = quotientGroupByHom (Ring.additiveGroup R) (RingHom.groupHom f)
|
||||
Ring.*WellDefined quotientRing fr=ft fs=fu = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (transitive (RingHom.ringHom f) (transitive (Ring.*WellDefined R2 (quotientGroupLemma' (Ring.additiveGroup R) (RingHom.groupHom f) fr=ft) (quotientGroupLemma' (Ring.additiveGroup R) (RingHom.groupHom f) fs=fu)) (symmetric (RingHom.ringHom f))))
|
||||
quotientByRingHom : Ring (quotientGroupSetoid (Ring.additiveGroup R) (RingHom.groupHom f)) _+A_ _*A_
|
||||
Ring.additiveGroup quotientByRingHom = quotientGroupByHom (Ring.additiveGroup R) (RingHom.groupHom f)
|
||||
Ring.*WellDefined quotientByRingHom fr=ft fs=fu = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (transitive (RingHom.ringHom f) (transitive (Ring.*WellDefined R2 (quotientGroupLemma' (Ring.additiveGroup R) (RingHom.groupHom f) fr=ft) (quotientGroupLemma' (Ring.additiveGroup R) (RingHom.groupHom f) fs=fu)) (symmetric (RingHom.ringHom f))))
|
||||
where
|
||||
open Setoid T
|
||||
open Equivalence eq
|
||||
Ring.1R quotientRing = Ring.1R R
|
||||
Ring.groupIsAbelian quotientRing = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.groupIsAbelian R))
|
||||
Ring.*Associative quotientRing = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.*Associative R))
|
||||
Ring.*Commutative quotientRing = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.*Commutative R))
|
||||
Ring.*DistributesOver+ quotientRing = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.*DistributesOver+ R))
|
||||
Ring.identIsIdent quotientRing = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.identIsIdent R))
|
||||
Ring.1R quotientByRingHom = Ring.1R R
|
||||
Ring.groupIsAbelian quotientByRingHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.groupIsAbelian R))
|
||||
Ring.*Associative quotientByRingHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.*Associative R))
|
||||
Ring.*Commutative quotientByRingHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.*Commutative R))
|
||||
Ring.*DistributesOver+ quotientByRingHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.*DistributesOver+ R))
|
||||
Ring.identIsIdent quotientByRingHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.identIsIdent R))
|
||||
|
||||
projectionMapIsHom : RingHom R quotientRing id
|
||||
projectionMapIsHom : RingHom R quotientByRingHom id
|
||||
RingHom.preserves1 projectionMapIsHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (Equivalence.reflexive (Setoid.eq T))
|
||||
RingHom.ringHom projectionMapIsHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (Equivalence.reflexive (Setoid.eq T))
|
||||
RingHom.groupHom projectionMapIsHom = projectionMapIsGroupHom
|
||||
|
Reference in New Issue
Block a user