mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-19 10:08:42 +00:00
Quotient ring (#81)
This commit is contained in:
@@ -34,11 +34,11 @@ groupKernelPred a = Setoid._∼_ T (f a) (Group.0G H)
|
||||
groupKernelPredWd : {x y : A} → (Setoid._∼_ S x y) → groupKernelPred x → groupKernelPred y
|
||||
groupKernelPredWd x=y fx=0 = transitive (GroupHom.wellDefined fHom (Equivalence.symmetric (Setoid.eq S) x=y)) fx=0
|
||||
|
||||
groupKernelIsSubgroup : subgroup G groupKernelPred
|
||||
_&_&_.one (_&&_.snd groupKernelIsSubgroup) fg=0 fh=0 = transitive (transitive (GroupHom.groupHom fHom) (Group.+WellDefined H fg=0 fh=0)) (Group.identLeft H)
|
||||
_&_&_.two (_&&_.snd groupKernelIsSubgroup) = imageOfIdentityIsIdentity fHom
|
||||
_&_&_.three (_&&_.snd groupKernelIsSubgroup) fg=0 = transitive (homRespectsInverse fHom) (transitive (inverseWellDefined H fg=0) (invIdent H))
|
||||
_&&_.fst groupKernelIsSubgroup = groupKernelPredWd
|
||||
groupKernelIsSubgroup : Subgroup G groupKernelPred
|
||||
Subgroup.closedUnderPlus groupKernelIsSubgroup fg=0 fh=0 = transitive (transitive (GroupHom.groupHom fHom) (Group.+WellDefined H fg=0 fh=0)) (Group.identLeft H)
|
||||
Subgroup.containsIdentity groupKernelIsSubgroup = imageOfIdentityIsIdentity fHom
|
||||
Subgroup.closedUnderInverse groupKernelIsSubgroup fg=0 = transitive (homRespectsInverse fHom) (transitive (inverseWellDefined H fg=0) (invIdent H))
|
||||
Subgroup.isSubset groupKernelIsSubgroup = groupKernelPredWd
|
||||
|
||||
groupKernelIsNormalSubgroup : normalSubgroup G groupKernelIsSubgroup
|
||||
groupKernelIsNormalSubgroup {g} fk=0 = transitive (transitive (transitive (GroupHom.groupHom fHom) (transitive (Group.+WellDefined H reflexive (transitive (GroupHom.groupHom fHom) (transitive (Group.+WellDefined H fk=0 reflexive) (Group.identLeft H)))) (symmetric (GroupHom.groupHom fHom)))) (GroupHom.wellDefined fHom (Group.invRight G {g}))) (imageOfIdentityIsIdentity fHom)
|
||||
|
Reference in New Issue
Block a user