mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-17 17:38:38 +00:00
Restructure towards ideals
This commit is contained in:
21
Groups/QuotientGroup/Lemmas.agda
Normal file
21
Groups/QuotientGroup/Lemmas.agda
Normal file
@@ -0,0 +1,21 @@
|
||||
{-# OPTIONS --warning=error --safe --without-K #-}
|
||||
|
||||
open import Functions
|
||||
open import Sets.FinSet
|
||||
open import LogicalFormulae
|
||||
open import Groups.Definition
|
||||
open import Groups.Groups
|
||||
open import Groups.FiniteGroups.Definition
|
||||
open import Groups.Homomorphisms.Definition
|
||||
open import Groups.Abelian.Definition
|
||||
open import Setoids.Setoids
|
||||
open import Fields.FieldOfFractions.Setoid
|
||||
open import Sets.EquivalenceRelations
|
||||
open import Groups.Lemmas
|
||||
open import Groups.QuotientGroup.Definition
|
||||
|
||||
module Groups.QuotientGroup.Lemmas {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A → A → A} {_+B_ : B → B → B} (G : Group S _+A_) (H : Group T _+B_) {f : A → B} (fHom : GroupHom G H f) where
|
||||
|
||||
projectionMapIsGroupHom : GroupHom G (quotientGroupByHom G fHom) id
|
||||
GroupHom.groupHom projectionMapIsGroupHom {x} {y} = quotientGroupLemma G fHom (Equivalence.reflexive (Setoid.eq T))
|
||||
GroupHom.wellDefined projectionMapIsGroupHom x=y = quotientGroupLemma G fHom (GroupHom.wellDefined fHom x=y)
|
Reference in New Issue
Block a user