mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-19 01:58:45 +00:00
Restructure towards ideals
This commit is contained in:
@@ -12,7 +12,6 @@ open import Groups.Groups
|
||||
open import Groups.Subgroups.Definition
|
||||
open import Groups.Homomorphisms.Definition
|
||||
open import Groups.Actions.Definition
|
||||
open import Groups.Groups2
|
||||
open import Sets.EquivalenceRelations
|
||||
open import Groups.Actions.Definition
|
||||
|
||||
@@ -29,12 +28,13 @@ stabiliserWellDefined x {g} {h} g=h gx=x = transitive (actionWellDefined1 (Equiv
|
||||
where
|
||||
open Equivalence eq
|
||||
|
||||
stabiliserSubgroup : (x : B) → subgroup G (stabiliserWellDefined x)
|
||||
_&_&_.one (stabiliserSubgroup x) gx=x hx=x = transitive associativeAction (transitive (actionWellDefined2 hx=x) gx=x)
|
||||
open Setoid T
|
||||
open Equivalence (Setoid.eq T)
|
||||
|
||||
stabiliserSubgroup : (x : B) → subgroup G (stabiliserPred x)
|
||||
_&&_.fst (stabiliserSubgroup x) = stabiliserWellDefined x
|
||||
_&_&_.one (_&&_.snd (stabiliserSubgroup x)) gx=x hx=x = transitive associativeAction (transitive (actionWellDefined2 hx=x) gx=x)
|
||||
_&_&_.two (_&&_.snd (stabiliserSubgroup x)) = identityAction
|
||||
_&_&_.three (_&&_.snd (stabiliserSubgroup x)) {g} gx=x = transitive (transitive (transitive (actionWellDefined2 (symmetric gx=x)) (symmetric associativeAction)) (actionWellDefined1 (invLeft {g}))) identityAction
|
||||
where
|
||||
open Equivalence eq
|
||||
_&_&_.two (stabiliserSubgroup x) = identityAction
|
||||
_&_&_.three (stabiliserSubgroup x) {g = g} gx=x = transitive (transitive (transitive (actionWellDefined2 (symmetric gx=x)) (symmetric associativeAction)) (actionWellDefined1 (invLeft {g}))) identityAction
|
||||
where
|
||||
open Equivalence eq
|
||||
open Group G
|
||||
|
Reference in New Issue
Block a user