Define the free product (#104)

This commit is contained in:
Patrick Stevens
2020-03-28 21:34:14 +00:00
committed by GitHub
parent 162a1c7a40
commit a27375db4e
21 changed files with 1326 additions and 18 deletions

54
Modules/Span.agda Normal file
View File

@@ -0,0 +1,54 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Functions
open import Groups.Definition
open import Groups.Abelian.Definition
open import Setoids.Setoids
open import Rings.Definition
open import Sets.FinSet.Definition
open import Vectors
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Modules.Definition
module Modules.Span {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+R_ : A A A} {_*_ : A A A} {R : Ring S _+R_ _*_} {m n : _} {M : Set m} {T : Setoid {m} {n} M} {_+_ : M M M} {G' : Group T _+_} {G : AbelianGroup G'} {_·_ : A M M} (mod : Module R G _·_) where
open Group G'
open Setoid T
open Equivalence eq
_=V_ : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} (G : Group S _+_) {n1 : } Rel {a} {b n} (Vec A n1)
_=V_ G [] [] = True'
_=V_ {S = S} G (x ,- xs) (y ,- ys) = (Setoid.__ S x y) && (_=V_ G xs ys)
dot : {n : } (Vec M n) (Vec A n) M
dot [] [] = 0G
dot (v ,- vs) (x ,- xs) = (x · v) + (dot vs xs)
Spans : {c : _} {C : Set c} (f : C M) Set (a m n c)
Spans {C = C} f = (m : M) Sg (λ n Sg ((Vec C n) && (Vec A n)) (λ t (dot (vecMap f (_&&_.fst t)) (_&&_.snd t)) m))
Independent : {c : _} {C : Set c} (f : C M) Set (a b n c)
Independent {C = C} f = {n : } (r : Vec C n) ({a b : } (a<n : a <N n) (b<n : b <N n) vecIndex r a a<n vecIndex r b b<n a b) (b : Vec A n) (dot (vecMap f r) b) 0G _=V_ (Ring.additiveGroup R) (vecPure (Group.0G (Ring.additiveGroup R))) b
independentSubset : {c : _} {C : Set c} (f : C M) {d : _} {D : Set d} {inj : D C} (isInj : Injection inj) Independent f Independent (f inj)
independentSubset f {inj = inj} isInj indp {n = n} r coeffInj coeffs dotZero = indp {n = n} (vecMap inj r) inj' coeffs (transitive (identityOfIndiscernablesRight __ reflexive (applyEquality (λ i dot i coeffs) (vecMapCompose inj f r))) dotZero)
where
inj' : {a b : } (a<n : a <N n) (b<n : b <N n) vecIndex (vecMap inj r) a a<n vecIndex (vecMap inj r) b b<n a b
inj' a<n b<n x rewrite vecMapAndIndex r inj a<n | vecMapAndIndex r inj b<n = coeffInj a<n b<n (isInj x)
spanSuperset : {c : _} {C : Set c} (f : C M) {d : _} {D : Set d} {surj : D C} (isSurj : Surjection surj) Spans f Spans (f surj)
spanSuperset f {surj = surj} isSurj spans m with spans m
spanSuperset {C = C} f {surj = surj} isSurj spans m | n , ((coeffs ,, basis) , b) = n , ((vecMap (λ c underlying (isSurj c)) coeffs ,, basis) , transitive (identityOfIndiscernablesLeft __ reflexive (applyEquality (λ i dot i basis) (equalityCommutative {x = vecMap (λ i f (surj i)) (vecMap (λ c underlying (isSurj c)) coeffs)} {vecMap f coeffs} (transitivity (vecMapCompose (λ i underlying (isSurj i)) (λ z f (surj z)) coeffs) (t coeffs))))) b)
where
t : {n : } (coeffs : Vec C n) vecMap (λ i f (surj (underlying (isSurj i)))) coeffs vecMap f coeffs
t [] = refl
t (x ,- coeffs) with isSurj x
... | img , pr rewrite pr | t coeffs = refl
Basis : {c : _} {C : Set c} (f : C M) Set (a b m n c)
Basis v = Spans v && Independent v