mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-17 17:38:38 +00:00
Define the free product (#104)
This commit is contained in:
@@ -32,7 +32,7 @@ GroupHom.groupHom (groupHomsCompose {U = U} {_+C_ = _·C_} {I} {g} gHom) {x} {y}
|
||||
answer = (Equivalence.transitive (Setoid.eq U)) (GroupHom.wellDefined gHom (GroupHom.groupHom hom {x} {y}) ) (GroupHom.groupHom gHom {f x} {f y})
|
||||
|
||||
homRespectsInverse : {x : A} → Setoid._∼_ T (f (Group.inverse G x)) (Group.inverse H (f x))
|
||||
homRespectsInverse {x} = rightInversesAreUnique H (f x) (f (Group.inverse G x)) (transitive (symmetric (GroupHom.groupHom hom)) (transitive (GroupHom.wellDefined hom (Group.invLeft G)) imageOfIdentityIsIdentity))
|
||||
homRespectsInverse {x} = rightInversesAreUnique H {f x} {f (Group.inverse G x)} (transitive (symmetric (GroupHom.groupHom hom)) (transitive (GroupHom.wellDefined hom (Group.invLeft G)) imageOfIdentityIsIdentity))
|
||||
where
|
||||
open Setoid T
|
||||
open Equivalence eq
|
||||
|
Reference in New Issue
Block a user