Alternative LUB property (#97)

This commit is contained in:
Patrick Stevens
2020-02-13 07:51:41 +00:00
committed by GitHub
parent d183b40d11
commit 9de323c5e8
4 changed files with 157 additions and 1 deletions

View File

@@ -0,0 +1,72 @@
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.ClassicalReals.RealField
open import LogicalFormulae
open import Setoids.Subset
open import Setoids.Setoids
open import Setoids.Orders
open import Sets.EquivalenceRelations
open import Rings.Orders.Total.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Definition
open import Fields.Fields
open import Groups.Definition
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Numbers.Naturals.Order.Lemmas
open import Sequences
module Numbers.ClassicalReals.Sequences ( : RealField) where
open RealField
open Setoid S
open Equivalence eq
open Ring R
open Field F
open SetoidPartialOrder pOrder
open import Fields.Orders.LeastUpperBounds.Definition pOrder
open import Rings.Orders.Total.Lemmas orderedRing
open import Rings.Orders.Partial.Lemmas pOrderedRing
open Group additiveGroup
open PartiallyOrderedRing pOrderedRing
open SetoidTotalOrder (TotallyOrderedRing.total orderedRing)
open import Rings.InitialRing R
open import Fields.Orders.Lemmas oField
open import Rings.Lemmas R
open import Groups.Lemmas additiveGroup
open import Numbers.Intervals.Definition pOrderedRing
open import Numbers.Intervals.Arithmetic pOrderedRing
open import Fields.Lemmas F
open import Fields.Orders.Total.Definition F
orderedField : TotallyOrderedField pOrderedRing
orderedField = record { oRing = orderedRing }
open import Fields.Orders.Limits.Definition orderedField
StrictlyIncreasing : Sequence A Set c
StrictlyIncreasing x = (n : ) (index x n) < (index x (succ n))
Increasing : Sequence A Set (b c)
Increasing x = (n : ) ((index x n) < (index x (succ n))) || ((index x n) (index x (succ n)))
Bounded : Sequence A Set (a c)
Bounded x = Sg A (λ K (n : ) index x n < K)
sequencePredicate : (x : Sequence A) A Set b
sequencePredicate x a = Sg (λ n index x n a)
sequenceSubset : (x : Sequence A) subset S (sequencePredicate x)
sequenceSubset sequence {x} {y} x=y (n , sn=x) = n , transitive sn=x x=y
boundedSequenceBounds : (K : A) (x : Sequence A) ((n : ) index x n < K) UpperBound (sequenceSubset x) K
boundedSequenceBounds K x pr y (n , y=xn) = inl (<WellDefined y=xn reflexive (pr n))
increasingBoundedLimit : (x : Sequence A) Increasing x Bounded x A
increasingBoundedLimit x increasing (K , kIsBound) with lub (sequenceSubset x) ((index x 0) , (0 , reflexive)) (K , boundedSequenceBounds K x kIsBound)
... | a , _ = a
increasingBoundedConverges : (x : Sequence A) (increasing : Increasing x) (bounded : Bounded x) x ~> (increasingBoundedLimit x increasing bounded)
increasingBoundedConverges x increasing bounded = {!!}