mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-18 09:48:38 +00:00
Irreducible and maximal (#87)
This commit is contained in:
27
Rings/Irreducibles/Lemmas.agda
Normal file
27
Rings/Irreducibles/Lemmas.agda
Normal file
@@ -0,0 +1,27 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Setoids.Orders
|
||||
open import Setoids.Setoids
|
||||
open import Sets.EquivalenceRelations
|
||||
open import Rings.IntegralDomains.Definition
|
||||
open import Rings.Definition
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Rings.Irreducibles.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where
|
||||
|
||||
open import Rings.Irreducibles.Definition intDom
|
||||
open import Rings.Divisible.Definition R
|
||||
open import Rings.Units.Definition R
|
||||
open import Rings.Associates.Definition intDom
|
||||
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
open Ring R
|
||||
|
||||
dividesIrreducibleImpliesUnit : {r c : A} → Irreducible r → c ∣ r → (r ∣ c → False) → Unit c
|
||||
dividesIrreducibleImpliesUnit {r} {c} irred (x , cx=r) notAssoc = Irreducible.irreducible irred x c (transitive *Commutative cx=r) nonunit
|
||||
where
|
||||
nonunit : Unit x → False
|
||||
nonunit (a , xa=1) = notAssoc (a , transitive (transitive (transitive (transitive (*WellDefined (symmetric cx=r) reflexive) (symmetric *Associative)) *Commutative) (*WellDefined xa=1 reflexive)) identIsIdent)
|
Reference in New Issue
Block a user