mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-14 07:58:41 +00:00
Semiring solver (#50)
This commit is contained in:
@@ -8,28 +8,3 @@ module Numbers.Integers.Definition where
|
||||
data ℤ : Set where
|
||||
nonneg : ℕ → ℤ
|
||||
negSucc : ℕ → ℤ
|
||||
|
||||
data ℤSimple : Set where
|
||||
negativeSucc : (a : ℕ) → ℤSimple
|
||||
positiveSucc : (a : ℕ) → ℤSimple
|
||||
zZero : ℤSimple
|
||||
|
||||
convertZ : ℤ → ℤSimple
|
||||
convertZ (nonneg zero) = zZero
|
||||
convertZ (nonneg (succ x)) = positiveSucc x
|
||||
convertZ (negSucc x) = negativeSucc x
|
||||
|
||||
convertZ' : ℤSimple → ℤ
|
||||
convertZ' (negativeSucc a) = negSucc a
|
||||
convertZ' (positiveSucc a) = nonneg (succ a)
|
||||
convertZ' zZero = nonneg 0
|
||||
|
||||
zIsZ : (a : ℤ) → convertZ' (convertZ a) ≡ a
|
||||
zIsZ (nonneg zero) = refl
|
||||
zIsZ (nonneg (succ x)) = refl
|
||||
zIsZ (negSucc x) = refl
|
||||
|
||||
zIsZ' : (a : ℤSimple) → convertZ (convertZ' a) ≡ a
|
||||
zIsZ' (negativeSucc a) = refl
|
||||
zIsZ' (positiveSucc a) = refl
|
||||
zIsZ' zZero = refl
|
||||
|
Reference in New Issue
Block a user