mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-08 05:18:40 +00:00
Rename some confusing fields (#51)
This commit is contained in:
@@ -180,13 +180,13 @@ distLemma a b rewrite Semiring.commutative ℕSemiring (a +N b *N a) b | Semirin
|
||||
|
||||
ℤRing : Ring (reflSetoid ℤ) _+Z_ _*Z_
|
||||
Ring.additiveGroup ℤRing = ℤGroup
|
||||
Ring.multWellDefined ℤRing refl refl = refl
|
||||
Ring.*WellDefined ℤRing refl refl = refl
|
||||
Ring.1R ℤRing = nonneg 1
|
||||
Ring.groupIsAbelian ℤRing {a} {b} = +ZCommutative a b
|
||||
Ring.multAssoc ℤRing {a} {b} {c} = *ZAssociative a b c
|
||||
Ring.multCommutative ℤRing {a} {b} = *ZCommutative a b
|
||||
Ring.multDistributes ℤRing {a} {b} {c} = *ZDistributesOver+Z a b c
|
||||
Ring.multIdentIsIdent ℤRing {a} = *ZleftIdent a
|
||||
Ring.*Associative ℤRing {a} {b} {c} = *ZAssociative a b c
|
||||
Ring.*Commutative ℤRing {a} {b} = *ZCommutative a b
|
||||
Ring.*DistributesOver+ ℤRing {a} {b} {c} = *ZDistributesOver+Z a b c
|
||||
Ring.identIsIdent ℤRing {a} = *ZleftIdent a
|
||||
|
||||
intDom : (a b : ℤ) → a *Z b ≡ nonneg 0 → (a ≡ nonneg 0) || (b ≡ nonneg 0)
|
||||
intDom (nonneg zero) (nonneg b) pr = inl refl
|
||||
|
Reference in New Issue
Block a user