mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-13 23:58:38 +00:00
Rename some confusing fields (#51)
This commit is contained in:
@@ -76,14 +76,14 @@ additiveInverse (nonneg (succ x)) = negSucc x
|
||||
additiveInverse (negSucc x) = nonneg (succ x)
|
||||
|
||||
ℤGroup : Group (reflSetoid ℤ) (_+Z_)
|
||||
Group.wellDefined ℤGroup refl refl = refl
|
||||
Group.identity ℤGroup = nonneg 0
|
||||
Group.+WellDefined ℤGroup refl refl = refl
|
||||
Group.0G ℤGroup = nonneg 0
|
||||
Group.inverse ℤGroup = additiveInverse
|
||||
Group.multAssoc ℤGroup {a} {b} {c} = +ZAssociative a b c
|
||||
Group.multIdentRight ℤGroup {nonneg zero} = refl
|
||||
Group.multIdentRight ℤGroup {nonneg (succ x)} = applyEquality (λ i → nonneg (succ i)) (Semiring.commutative ℕSemiring x 0)
|
||||
Group.multIdentRight ℤGroup {negSucc x} = refl
|
||||
Group.multIdentLeft ℤGroup = refl
|
||||
Group.+Associative ℤGroup {a} {b} {c} = +ZAssociative a b c
|
||||
Group.identRight ℤGroup {nonneg zero} = refl
|
||||
Group.identRight ℤGroup {nonneg (succ x)} = applyEquality (λ i → nonneg (succ i)) (Semiring.commutative ℕSemiring x 0)
|
||||
Group.identRight ℤGroup {negSucc x} = refl
|
||||
Group.identLeft ℤGroup = refl
|
||||
Group.invLeft ℤGroup {nonneg zero} = refl
|
||||
Group.invLeft ℤGroup {nonneg (succ x)} = additiveInverseExists x
|
||||
Group.invLeft ℤGroup {negSucc x} = transitivity (+ZCommutative (nonneg (succ x)) (negSucc x)) (additiveInverseExists x)
|
||||
|
Reference in New Issue
Block a user