diff --git a/Everything/Safe.agda b/Everything/Safe.agda index cb3efb0..4c75715 100644 --- a/Everything/Safe.agda +++ b/Everything/Safe.agda @@ -56,6 +56,6 @@ open import Semirings.Definition open import Semirings.Solver open import Fields.CauchyCompletion.Group -open import Fields.CauchyCompletion.Approximation +open import Fields.CauchyCompletion.Multiplication module Everything.Safe where diff --git a/Fields/CauchyCompletion/Multiplication.agda b/Fields/CauchyCompletion/Multiplication.agda index a5c30d7..8cca706 100644 --- a/Fields/CauchyCompletion/Multiplication.agda +++ b/Fields/CauchyCompletion/Multiplication.agda @@ -14,6 +14,7 @@ open import Setoids.Orders open import Functions open import LogicalFormulae open import Numbers.Naturals.Naturals +open import Semirings.Definition module Fields.CauchyCompletion.Multiplication {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder {_<_ = _<_} pOrder} {R : Ring S _+_ _*_} (order : OrderedRing R tOrder) (F : Field R) (charNot2 : Setoid._∼_ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) → False) where @@ -25,7 +26,9 @@ open OrderedRing order open Ring R open Group additiveGroup open Field F +open import Fields.Orders.Lemmas {F = F} record { oRing = order } +open import Fields.Lemmas F open import Rings.Orders.Lemmas(order) open import Fields.CauchyCompletion.Definition order F open import Fields.CauchyCompletion.Setoid order F charNot2 @@ -33,9 +36,113 @@ open import Fields.CauchyCompletion.Comparison order F charNot2 open import Fields.CauchyCompletion.Addition order F charNot2 open import Fields.CauchyCompletion.Approximation order F charNot2 +0!=1 : {e : A} → (0G < e) → 0R ∼ 1R → False +0!=1 {e} 0