mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-13 15:48:39 +00:00
Another phrasing of Euclidean Domain (#90)
This commit is contained in:
@@ -23,8 +23,23 @@ open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Rings.EuclideanDomains.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (E : EuclideanDomain R) where
|
||||
|
||||
open import Rings.PrincipalIdealDomain R
|
||||
open import Rings.PrincipalIdealDomains.Definition (EuclideanDomain.isIntegralDomain E)
|
||||
open import Rings.Ideals.Principal.Definition R
|
||||
open import Rings.Divisible.Definition R
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Equivalence eq
|
||||
|
||||
euclideanDomainIsPid : {c : _} → PrincipalIdealDomain {c}
|
||||
euclideanDomainIsPid ideal = {!!}
|
||||
euclideanDomainIsPid {pred = pred} ideal = {!!}
|
||||
-- We definitely need to be able to decide equality in order to deduce this; otherwise we can't tell the difference
|
||||
-- between "everything is 0" and "something is nonzero", and the proofs are genuinely different in the two cases.
|
||||
where
|
||||
r : A
|
||||
r = {!!}
|
||||
r!=0 : (r ∼ 0R) → False
|
||||
r!=0 = {!!}
|
||||
predR : pred r
|
||||
predR = {!!}
|
||||
sr : (s : A) → r ∣ s
|
||||
sr = EuclideanDomain.divisionAlg r!=0 s!=0 ?
|
||||
|
Reference in New Issue
Block a user