mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-16 00:48:41 +00:00
Move Bool to live on its own (#118)
This commit is contained in:
@@ -98,14 +98,6 @@ lessImpliesNotEqual {a} {.a} prAB refl = TotalOrder.irreflexive ℕTotalOrder pr
|
||||
-NIsDecreasing {a} {b} prAB with (-N (inl prAB))
|
||||
-NIsDecreasing {a} {b} (le x proof) | record { result = result ; pr = pr } = record { x = a ; proof = pr }
|
||||
|
||||
equalityN : (a b : ℕ) → Sg Bool (λ truth → if truth then a ≡ b else True)
|
||||
equalityN zero zero = ( BoolTrue , refl )
|
||||
equalityN zero (succ b) = ( BoolFalse , record {} )
|
||||
equalityN (succ a) zero = ( BoolFalse , record {} )
|
||||
equalityN (succ a) (succ b) with equalityN a b
|
||||
equalityN (succ a) (succ b) | BoolTrue , val = (BoolTrue , applyEquality succ val)
|
||||
equalityN (succ a) (succ b) | BoolFalse , val = (BoolFalse , record {})
|
||||
|
||||
sumZeroImpliesSummandsZero : {a b : ℕ} → (a +N b ≡ zero) → ((a ≡ zero) && (b ≡ zero))
|
||||
sumZeroImpliesSummandsZero {zero} {zero} pr = record { fst = refl ; snd = refl }
|
||||
sumZeroImpliesSummandsZero {zero} {(succ b)} pr = record { fst = refl ; snd = pr }
|
||||
|
Reference in New Issue
Block a user