mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-12 15:18:40 +00:00
Move Bool to live on its own (#118)
This commit is contained in:
@@ -1,5 +1,6 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import Sets.EquivalenceRelations
|
||||
open import Setoids.Setoids
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
@@ -16,3 +17,9 @@ record Group {lvl1 lvl2} {A : Set lvl1} (S : Setoid {lvl1} {lvl2} A) (_·_ : A
|
||||
identLeft : {a : A} → (0G · a) ∼ a
|
||||
invLeft : {a : A} → (inverse a) · a ∼ 0G
|
||||
invRight : {a : A} → a · (inverse a) ∼ 0G
|
||||
+Associative' : {a b c : A} → ((a · b) · c) ∼ (a · (b · c))
|
||||
+Associative' = Equivalence.symmetric (Setoid.eq S) +Associative
|
||||
+WellDefinedLeft : {m x n : A} → (m ∼ n) → (m · x) ∼ (n · x)
|
||||
+WellDefinedLeft m=n = +WellDefined m=n (Equivalence.reflexive (Setoid.eq S))
|
||||
+WellDefinedRight : {m x y : A} → (x ∼ y) → (m · x) ∼ (m · y)
|
||||
+WellDefinedRight x=y = +WellDefined (Equivalence.reflexive (Setoid.eq S)) x=y
|
||||
|
@@ -10,6 +10,7 @@ open import Sets.FinSet.Definition
|
||||
open import Groups.Definition
|
||||
open import Groups.SymmetricGroups.Definition
|
||||
open import Decidable.Sets
|
||||
open import Boolean.Definition
|
||||
|
||||
module Groups.FreeGroup.Definition where
|
||||
|
||||
|
@@ -11,6 +11,7 @@ open import LogicalFormulae
|
||||
open import Semirings.Definition
|
||||
open import Functions
|
||||
open import Groups.Isomorphisms.Definition
|
||||
open import Boolean.Definition
|
||||
|
||||
module Groups.FreeGroup.Parity {a : _} {A : Set a} (decA : DecidableSet A) where
|
||||
|
||||
|
@@ -7,6 +7,7 @@ open import Decidable.Sets
|
||||
open import Numbers.Naturals.Semiring
|
||||
open import Numbers.Naturals.Order
|
||||
open import LogicalFormulae
|
||||
open import Boolean.Definition
|
||||
|
||||
module Groups.FreeGroup.Word {a : _} {A : Set a} (decA : DecidableSet A) where
|
||||
|
||||
|
Reference in New Issue
Block a user