mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-13 15:48:39 +00:00
Polynomial ring (#76)
This commit is contained in:
22
Rings/Isomorphisms/Definition.agda
Normal file
22
Rings/Isomorphisms/Definition.agda
Normal file
@@ -0,0 +1,22 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Groups.Groups
|
||||
open import Groups.Homomorphisms.Definition
|
||||
open import Groups.Definition
|
||||
open import Numbers.Naturals.Naturals
|
||||
open import Setoids.Orders
|
||||
open import Setoids.Setoids
|
||||
open import Functions
|
||||
open import Sets.EquivalenceRelations
|
||||
open import Rings.Definition
|
||||
open import Rings.Homomorphisms.Definition
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Rings.Isomorphisms.Definition {a b c d : _} {A : Set a} {S : Setoid {a} {b} A} {_+1_ _*1_ : A → A → A} (R1 : Ring S _+1_ _*1_) {B : Set c} {T : Setoid {c} {d} B} {_+2_ _*2_ : B → B → B} (R2 : Ring T _+2_ _*2_) where
|
||||
|
||||
record RingIso (f : A → B) : Set (a ⊔ b ⊔ c ⊔ d) where
|
||||
field
|
||||
ringHom : RingHom R1 R2 f
|
||||
bijective : Bijection f
|
Reference in New Issue
Block a user