mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-15 16:38:40 +00:00
Polynomial ring (#76)
This commit is contained in:
20
Rings/Ideals/Definition.agda
Normal file
20
Rings/Ideals/Definition.agda
Normal file
@@ -0,0 +1,20 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Groups.Groups
|
||||
open import Groups.Homomorphisms.Definition
|
||||
open import Groups.Definition
|
||||
open import Numbers.Naturals.Naturals
|
||||
open import Setoids.Orders
|
||||
open import Setoids.Setoids
|
||||
open import Functions
|
||||
open import Sets.EquivalenceRelations
|
||||
open import Rings.Definition
|
||||
open import Rings.Homomorphisms.Definition
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Rings.Ideals.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where
|
||||
|
||||
ringKernel : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+2_ _*2_ : C → C → C} (R2 : Ring T _+2_ _*2_) {f : A → C} (fHom : RingHom R R2 f) → Set (a ⊔ d)
|
||||
ringKernel {T = T} R2 {f} fHom = Sg A (λ a → Setoid._∼_ T (f a) (Ring.0R R2))
|
Reference in New Issue
Block a user