mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-16 17:08:39 +00:00
Polynomial ring (#76)
This commit is contained in:
26
Rings/Homomorphisms/Definition.agda
Normal file
26
Rings/Homomorphisms/Definition.agda
Normal file
@@ -0,0 +1,26 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Groups.Groups
|
||||
open import Groups.Homomorphisms.Definition
|
||||
open import Groups.Definition
|
||||
open import Numbers.Naturals.Naturals
|
||||
open import Setoids.Orders
|
||||
open import Setoids.Setoids
|
||||
open import Functions
|
||||
open import Sets.EquivalenceRelations
|
||||
open import Rings.Definition
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
-- Following Part IB's course Groups, Rings, and Modules, we take rings to be commutative with one.
|
||||
module Rings.Homomorphisms.Definition where
|
||||
|
||||
record RingHom {m n o p : _} {A : Set m} {B : Set n} {SA : Setoid {m} {o} A} {SB : Setoid {n} {p} B} {_+A_ : A → A → A} {_*A_ : A → A → A} (R : Ring SA _+A_ _*A_) {_+B_ : B → B → B} {_*B_ : B → B → B} (S : Ring SB _+B_ _*B_) (f : A → B) : Set (m ⊔ n ⊔ o ⊔ p) where
|
||||
open Ring S
|
||||
open Group additiveGroup
|
||||
open Setoid SB
|
||||
field
|
||||
preserves1 : f (Ring.1R R) ∼ 1R
|
||||
ringHom : {r s : A} → f (r *A s) ∼ (f r) *B (f s)
|
||||
groupHom : GroupHom (Ring.additiveGroup R) additiveGroup f
|
Reference in New Issue
Block a user