mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-15 08:28:39 +00:00
Polynomial ring (#76)
This commit is contained in:
@@ -14,49 +14,26 @@ open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
-- Following Part IB's course Groups, Rings, and Modules, we take rings to be commutative with one.
|
||||
module Rings.Definition where
|
||||
record Ring {n m} {A : Set n} (S : Setoid {n} {m} A) (_+_ : A → A → A) (_*_ : A → A → A) : Set (lsuc n ⊔ m) where
|
||||
field
|
||||
additiveGroup : Group S _+_
|
||||
open Group additiveGroup
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
0R : A
|
||||
0R = 0G
|
||||
_-R_ : A → A → A
|
||||
a -R b = a + (inverse b)
|
||||
field
|
||||
*WellDefined : {r s t u : A} → (r ∼ t) → (s ∼ u) → r * s ∼ t * u
|
||||
1R : A
|
||||
groupIsAbelian : {a b : A} → a + b ∼ b + a
|
||||
*Associative : {a b c : A} → (a * (b * c)) ∼ (a * b) * c
|
||||
*Commutative : {a b : A} → a * b ∼ b * a
|
||||
*DistributesOver+ : {a b c : A} → a * (b + c) ∼ (a * b) + (a * c)
|
||||
identIsIdent : {a : A} → 1R * a ∼ a
|
||||
timesZero : {a : A} → a * 0R ∼ 0R
|
||||
timesZero {a} = symmetric (transitive (transitive (symmetric invLeft) (+WellDefined reflexive (transitive (*WellDefined {a} {a} reflexive (symmetric identRight)) *DistributesOver+))) (transitive +Associative (transitive (+WellDefined invLeft reflexive) identLeft)))
|
||||
|
||||
|
||||
--directSumRing : {m n : _} → {A : Set m} {B : Set n} (r : Ring A) (s : Ring B) → Ring (A && B)
|
||||
--Ring.additiveGroup (directSumRing r s) = directSumGroup (Ring.additiveGroup r) (Ring.additiveGroup s)
|
||||
--Ring._*_ (directSumRing r s) (a ,, b) (c ,, d) = (Ring._*_ r a c) ,, Ring._*_ s b d
|
||||
--Ring.multWellDefined (directSumRing r s) (a ,, b) (c ,, d) = Ring.multWellDefined r a c ,, Ring.multWellDefined s b d
|
||||
--Ring.1R (directSumRing r s) = Ring.1R r ,, Ring.1R s
|
||||
--Ring.groupIsAbelian (directSumRing r s) = Ring.groupIsAbelian r ,, Ring.groupIsAbelian s
|
||||
--Ring.assoc (directSumRing r s) = Ring.assoc r ,, Ring.assoc s
|
||||
--Ring.multCommutative (directSumRing r s) = Ring.multCommutative r ,, Ring.multCommutative s
|
||||
--Ring.multDistributes (directSumRing r s) = Ring.multDistributes r ,, Ring.multDistributes s
|
||||
--Ring.identIsIdent (directSumRing r s) = Ring.identIsIdent r ,, Ring.identIsIdent s
|
||||
|
||||
record RingHom {m n o p : _} {A : Set m} {B : Set n} {SA : Setoid {m} {o} A} {SB : Setoid {n} {p} B} {_+A_ : A → A → A} {_*A_ : A → A → A} (R : Ring SA _+A_ _*A_) {_+B_ : B → B → B} {_*B_ : B → B → B} (S : Ring SB _+B_ _*B_) (f : A → B) : Set (m ⊔ n ⊔ o ⊔ p) where
|
||||
open Ring S
|
||||
open Group additiveGroup
|
||||
open Setoid SB
|
||||
field
|
||||
preserves1 : f (Ring.1R R) ∼ 1R
|
||||
ringHom : {r s : A} → f (r *A s) ∼ (f r) *B (f s)
|
||||
groupHom : GroupHom (Ring.additiveGroup R) additiveGroup f
|
||||
|
||||
--record RingIso {m n : _} {A : Set m} {B : Set n} (R : Ring A) (S : Ring B) (f : A → B) : Set (m ⊔ n) where
|
||||
-- field
|
||||
-- ringHom : RingHom R S f
|
||||
-- bijective : Bijection f
|
||||
record Ring {n m} {A : Set n} (S : Setoid {n} {m} A) (_+_ : A → A → A) (_*_ : A → A → A) : Set (lsuc n ⊔ m) where
|
||||
field
|
||||
additiveGroup : Group S _+_
|
||||
open Group additiveGroup
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
0R : A
|
||||
0R = 0G
|
||||
_-R_ : A → A → A
|
||||
a -R b = a + (inverse b)
|
||||
field
|
||||
*WellDefined : {r s t u : A} → (r ∼ t) → (s ∼ u) → r * s ∼ t * u
|
||||
1R : A
|
||||
groupIsAbelian : {a b : A} → a + b ∼ b + a
|
||||
*Associative : {a b c : A} → (a * (b * c)) ∼ (a * b) * c
|
||||
*Commutative : {a b : A} → a * b ∼ b * a
|
||||
*DistributesOver+ : {a b c : A} → a * (b + c) ∼ (a * b) + (a * c)
|
||||
identIsIdent : {a : A} → 1R * a ∼ a
|
||||
timesZero : {a : A} → a * 0R ∼ 0R
|
||||
timesZero {a} = symmetric (transitive (transitive (symmetric invLeft) (+WellDefined reflexive (transitive (*WellDefined {a} {a} reflexive (symmetric identRight)) *DistributesOver+))) (transitive +Associative (transitive (+WellDefined invLeft reflexive) identLeft)))
|
||||
*DistributesOver+' : {a b c : A} → (a + b) * c ∼ (a * c) + (b * c)
|
||||
*DistributesOver+' = transitive *Commutative (transitive *DistributesOver+ (+WellDefined *Commutative *Commutative))
|
||||
|
Reference in New Issue
Block a user